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Public introduction 

 

Subsurface Evaluation of CCS and Unconventional Risks (SECURe) is gathering unbiased, 
impartial scientific evidence for risk mitigation and monitoring for environmental protection to 
underpin subsurface geoenergy development. The main outputs of SECURe comprise 
recommendations for best practice for unconventional hydrocarbon production and geological 
CO2 storage. The project is funded from June 2018–May 2021. 

The project is developing monitoring and mitigation strategies for the full geoenergy project 
lifecycle; by assessing plausible hazards and monitoring associated environmental risks. This is 
achieved through a program of experimental research and advanced technology development that 
includes demonstration at commercial and research facilities to formulate best practice. We will 
meet stakeholder needs; from the design of monitoring and mitigation strategies relevant to 
operators and regulators, to developing communication strategies to provide a greater level of 
understanding of the potential impacts. 

The SECURe partnership comprises major research and commercial organisations from countries 
that host shale gas and CCS industries at different stages of operation (from permitted to closed). 
We are forming a durable international partnership with non-European groups; providing 
international access to study sites, creating links between projects and increasing our collective 
capability through exchange of scientific staff. 

 

Executive report summary 

A newly developed modelling framework is presented which specifically focusses on the 
Oklahoma case and the massive injection of wastewater, which led to a surge of induced 
seismicity. However, the modelling framework is versatile enough to be applied to any 
anthropogenic subsurface activities and should be seen as a good practice to maximize injection 
while minimizing induced seismicity. First, all the available a-priori knowledge is honored to deploy 
the simulation of the flow, induced stress changes and seismicity in the underground. Cutting-
edge, full physics-based models are calibrated with observed seismicity data. Second, a 
constrained optimization approach is used for an efficient screening of multiple injection scenarios. 
Ultimately, an optimum theoretical scenario is identified which allows the maximization of injection 
volumes while keeping the seismicity level below a safe cap and, more specifically, would have 
prevented the rapid growth of the seismicity rate in 2015 in Oklahoma. 
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1 Introduction 
In response to the rapid increase of the rate of seismicity in 2015 in central and northern Oklahoma, the 
regulators decided in 2016 to reduce the total volume of injected brine (waste-product of production of shale 
gas) to less than 40% of the 2014 total volume (Ellsworth, 2013; Walsh and Zoback, 2015). Late 2016, large 
magnitude earthquakes were recorded, and in April 2017 all the wells were shut in. In 2016-2017, the detailed 
causal relation between injection operations and seismicity was unclear. In contrast, it is now well recognized 
and documented that the surge of the number of earthquakes in the central and northern Oklahoma can be 
attributed to the massive injection of brine in the subsurface (Keranen et al., 2014; Weingarten et al., 2015). 

Multiple models have already been deployed to study either (i) the physical mechanisms at the origin of the 
induced events at Oklahoma (Johann et al., 2018; Goebel et al., 2017; Norbeck and Horne, 2016; Dempsey 
and Riffault, 2019) or (ii) to predict the return of the seismicity increase to a lower background rate after the 
stop of the injection activities in 2017 (Langenbruch and Zoback, 2016; Goebel et al., 2017; Langenbruch et 
al., 2018; Zhai et al., 2019). Up to now, these modelling strategies always involved simplifications either at the 
level of the simulations of the flow throughout the porous media (Goebel et al., 2017; Zhai et al., 2019) or at 
the level of the computations of the induced stress development and seismicity changes (Norbeck and Horne, 
2016; Langenbruch and Zoback, 2016; Langenbruch et al., 2018; Johann et al., 2018; Dempsey and Riffault, 
2019). In order to gain confidence in the predictive power of any modelling strategy, a thorough model 
validation against observed data is required. This step has largely been overlooked in existing modelling 
approaches of induced seismicity at Oklahoma which generally rely on simplified sensitivity analysis. 

In this study, a novel modelling approach is outlined that is tailored to honor as much as possible available a 
priori knowledge at injection sites in the central Oklahoma area (for simplicity the area is simply referred to as 
Oklahoma in the remainder of the manuscript). A priori knowledge consists of data on local geology, flow, 
mechanical and seismicity response. The model parameters of our seismological model are conditioned with 
the observed seismicity in order to best fit the full spatio-temporal history of induced earthquakes. It is only 
after completing this data assimilation procedure that injection strategies can be optimized to maximize the 
volume of injected brine while minimizing induced seismicity. For optimizing injection strategies, we deployed 
a constrained optimization workflow that maximizes injection volumes under a fixed limit of allowed seismicity 
rate. Optimization results show with a different spatio-temporal injection history, the rapid growth of the 
seismicity rate in 2015 can be successfully prevented while the total volume of injected brine can even be 
increased. It indicates that injection operations and mitigation measures for induced seismicity greatly benefit 
from optimization of spatio-temporal injection strategies as seismic risks can be reduced under continuing 
injection operations. 

2 Methodology 

2.1 FLOW SIMULATIONS 

The two main identified mechanisms that cause induced seismicity at Oklahoma are: (1) the slow diffusion of 
elevated pore pressure from the high-permeability Arbuckle aquifer (locus of the brine injections) to its low-
permeability basement at the nucleation depth of the induced events (e.g. Norbeck and Horne, 2016; 
Langenbruch and Zoback, 2016; Dempsey and Riffault, 2019); (2) the change in total stress at this depth in 
the basement that is caused by poro-elastic loading due to the inflation of the rock volume associated with the 
increase in pore pressure (e.g. Goebel et al., 2017; Zhai et al., 2019). 

The first modelling effort consists of assessing the historical spatio-temporal distribution of pore pressure 
changes caused by the massive injection of brine in the subsurface at Oklahoma. As in each step of our 
modelling strategy, this step aims to incorporate all the cumulated a priori knowledge on local geology, flow, 
mechanical and seismicity response at Oklahoma (Johnson, 2008; Faith et al., 2010; Keranen et al., 2013; 
Holland, 2013; Hinck et al., 2018; Pei et al., 2018). The computation of the pore pressure changes (Figure 1) 
is performed using the open source OPM-flow simulator (Open Porous Media Initiative, 2020, version 
2020.04).  
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Figure 1: Flow simulation - visualization via ResInsight (open source visualization software, ResInsight 
[Computer Software], version 2020.10, part of Open Porous Media Initiative, Ceentron Solutions, 2020) of the 
pressure field at the end of 2015. 

 

The flow model is populated by properties based on current understanding of the geological and 
hydrogeological settings at Oklahoma. Three layered-box models have been deployed, each of them including 
the same thickness for the Arbuckle aquifer and its basement but with different permeabilities and porosities 
(Table 1). Only the results of the flow simulation with a permeability of 50mD and 0.05mD for the Arbuckle 
aquifer and its basement, respectively, are discussed in this report (i.e. Model 1 in Table 1). This permeability 
contrast yields the most likely changes in pressures in the Arbuckle and its basement and is preferred to best 
match observations. 

 

Table 1: Geometry and model parameters of the flow simulation models. 

 Arbuckle Basement 

thickness porosity permeability thickness porosity permeability 

Model 1 1050m 0.22 50mD 5km 0.012 0.05mD 

Model 2 1050m 0.12 5mD 5km 0.008 0.005mD 

Model 3 1050m 0.22 50mD 5km 0.008 0.005mD 

 

The OPM-FLOW simulation model honors the geographical location and depths of all the wells according to 
the Oklahoma Corporation Commission. It includes more than 200 wells for central Oklahoma, the focus area 
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for the present study, and for each of the well injectors the historical monthly injection rate from January 1995 
to January 2018 is used as input (Figure 2). Note here that central and western Oklahoma can be considered 
as isolated and independent compartments in terms of flow (see Zhai et al. 2019); the same modelling 
complexities are attached to both areas of interest and solely focusing on central Oklahoma is considered 
sufficient to demonstrate the capabilities of the newly developed modelling framework. The injection depth at 
the Arbuckle level and distance to the basement has been reported as an important parameter correlated with 
the occurrence of the induced events (Hincks et al., 2018). The run-time of one full OPM-FLOW simulation 
from January 1995 to January 2018 takes less than 20 min, which is rather fast for such a complex flow 
simulation. The low computation time makes the simulations suitable for an ensemble-based approach that is 
used for the optimization. This optimization is the last step of our modelling approach (see Section 2.6). 

 

 

Figure 2: Historical yearly field-wide injection rate. 

 

2.2 INDUCED STRESSES IN THE BASEMENT 

The objective of this modelling step is to assess the spatio-temporal development of induced stresses at the 
earthquake nucleation depth, taken at approximately 4km depth based on the hypocenter locations of 
observed seismicity (McGarr and Barbour, 2017; Pei et al., 2018). The two main mechanisms that were 
identified to control induced stress development and earthquake nucleation at Oklahoma are included: (1) the 
decrease of the effective normal stress along the basement faults by pore pressure diffusion and (2) the 
changes in total stresses induced by poro-elastic effects associated with pressure increase and volumetric 
expansion of rock. 

Our modelling approach assumes that highly permeable faults are hydraulically connecting the base of the 
Arbuckle aquifer to the basement. Simple calculations including typical fault properties (diffusivity, porosity, 
thickness) show that the diffusion time throughout the highly permeable faults-channels is on the order of at 
most a few days (Zhai et al. 2019). Therefore, one can assume that the changes in pore pressure modelled 
by OPM-FLOW at the base of the aquifer are representative of the changes in pore pressure at 4km depth 
experienced by the basement faults. These changes in pore pressures relatively to the start of injection and 
along a horizontal plane at 4km depth are shown in Figure 3. The increase in pore pressure is at first in 2009 
localized at the center of the area of interest and then starts to progressively migrate towards the North-West. 
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Figure 3: Changes in pore pressure (in MPa) at 4km depth along the basement faults. 

 

From the spatio-temporal changes in pore pressures at 4km depth (Figure 3), the changes in the normal 
effective stress can be directly determined. Analogous to the analysis by Zhai et al. (2019), vertical strike-slip 
faults with a unique preferred fault strike azimuth of 50° are assumed to be ubiquitous in the basement. This 
faulting regime and the fault orientation is consistent with the statistical analysis of earthquake focal 
mechanisms and the in-situ stress analysis at Oklahoma (Alt and Zoback, 2016; Holland, 2013). Principal 
stresses are assumed to be spatially uniform around Oklahoma with a maximum horizontal stress azimuth 
oriented at 85°. 

Changes in total stress imposed by the volumetric changes of the rock volume is determined using the in-
house mechanical simulator MACRIS (Mechanical Analysis of Complex Reservoirs for Induced Seismicity, van 
Wees et al., 2019; Candela et al., 2019). The main advantage of MACRIS is that it is a mesh-free simulator, 
i.e. it does not need construction of a dedicated grid for the geomechanical analysis. MACRIS directly takes 
the grid of the flow simulation as input. In the present case, the grid consists of the 3D pressure fields computed 
by OPM-FLOW at a yearly sampling rate. Each grid block of the flow simulation is considered as an 
inflating/compacting nucleus of strain (or center of inflation/compaction, see Mindlin 1936; Geertsma, 1973; 
Okada, 1992). The contribution of each of these nuclei is integrated to compute the poro-elastic stress change 
at 4km depth in the basement. The Barnes-Hut algorithm (Barnes and Hut, 1986) is used for re-discretizing 
the initial flow grid. The purpose of using this algorithm is twofold: (i) to cluster the nuclei of strain close to the 
4km depth horizontal plane in order to increase the spatial stress resolution, and (ii) to shorten the computation 
time. The approach has been validated by comparison with relatively slow finite-element numerical 
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computations in a previous study (van Wees et al., 2018). The poro-elastic normal and shear stress changes 
acting on the faults at 4km depth can thus be calculated using MACRIS. Coulomb stress changes can be 
evaluated by considering shear stresses and effective normal stresses: 

𝑆 = 𝜏 −  [𝜇 − 𝛼]𝜎௡
ᇱ  (1) 

where 𝜏 is the shear stress acting along the fault plane, 𝜎௡
ᇱ  is the effective normal stress (which include the 

direct effect of the pore pressure increase intra-fault), 𝜇 is the coefficient of fault friction and 𝛼 is a constitutive 
parameter (zero in this study). The Coulomb stress rate 𝑆̇ along the horizontal plane at 4km depth is presented 
in Figure 4. As observed with the pore pressure fields, high Coulomb stress rates are first (in 2009) localized 
in the center of the area of interest, and then progressively migrates towards the North-West. In 2015, Coulomb 
stress rates are highly localized in the northwestern corner of the study area. Following the new measures 
imposed by the regulator, the Coulomb stressing rate starts to decrease and delocalize in 2016. 

 

Figure 4: Coulomb stress rate fields (in MPa/Year) at 4km depth along the basement faults (same X-Y scale 
as Figure 3). 

2.3 INDUCED SEISMICITY 

The traditional Coulomb failure model predicts that whenever the Coulomb stress reaches a threshold value, 
an earthquake is generated. Assuming a population of faults on which the pre-stresses are uniformly 
distributed up to the threshold value, the Coulomb failure model depicts direct proportionality between the 
seismicity rate and the Coulomb stress rate. For example, during any arbitrary stressing history, the Coulomb 
failure model predicts an instantaneous reduction or rise of seismic events as soon as the Coulomb stress 
starts to decrease/increase. This prediction is not in agreement with the observed seismicity in central 
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Oklahoma since only a few observed events have been recorded in the year 2009 (cf. Section 2.4). The 
Coulomb failure model would predict a high seismicity rate that is linearly related to the high Coulomb stress 
rate in 2009 (Figure 4).  

One shortcoming of the Coulomb failure model is that it does not honor the frictional constitutive behavior of 
faults. Laboratory data show that the timing of dynamic instability of faults depends on initial stress conditions, 
fault properties and applied stress (Dieterich and Kilgore, 1996). Rate-and-state friction laws have been 
established in order to reproduce these laboratory observations (see Marone, 1998 for a review). More 
specifically, the rate-and-state friction laws reproduce the fact that the onset of frictional sliding is a non-
instantaneous time-dependent process (as opposed to the instantaneity assumption of the Coulomb model), 
which introduces a time-dependent failure mechanism for the generation of earthquakes. Now assuming a 
population of faults following a rate-and-state frictional behavior, and where the time-to-failure of the nucleation 
spots along the faults is uniformly distributed, Dieterich (1994) derived the following seismicity rate model: 

 𝑅஽ =
௥బ

ఊௌ̇బ
     where     

ௗఊ

ௗ௧
=

ଵ

஺ఙ೙
ᇲ [1 − 𝛾

ௗௌ

ௗ௧
] (2) 

   

and where 𝑅஽ is the seismicity rate, 𝛾 is a state variable, 𝑆 is the modified Coulomb stress function defined in 

equation (1). The constant 𝑟଴ is the steady-state background seismicity rate at the reference stressing rate 𝑆̇଴. 
𝐴 is a dimensionless fault constitutive parameter. 

Segall and Lu (2015) reformulated this seismicity rate equation to eliminate the state variable 𝛾. They defined 
a normalized seismicity rate, relative to the background rate, as: 

 𝑅 =
ோವ

௥బ
  (3) 

   

The differential equation for 𝑅, derived from equations (2) and (3), is:    

𝑑𝑅

𝑑𝑡
  =  

𝑅

𝑡௔

 ቈ
𝑆̇

𝑆̇଴

−  𝑅቉ (4) 

  

where 𝑡௔ = 𝐴𝜎௡
ᇱ /𝑆̇଴ is the characteristic time delay for the earthquake nucleation process. This delay also 

corresponds to the time scale of the decay in aftershock rate from the main shock back to the background rate. 

2.4 DECLUSTERING OF THE OBSERVED SEISMICITY 

The earthquake catalogue used for our study has been compiled by the Oklahoma Geological Survey. The 
minimum magnitude considered for our analysis is Mw = 3. Only the events nucleating between 3 km and 7 
km depth are selected. When this magnitude and depth filtering is applied to the raw earthquake catalogue, 
the maximum yearly rate of events at Oklahoma reaches roughly 400 events/year in 2015 (Figure 5). 

One of the assumptions in Dieterich’s seismicity rate theory (Dieterich, 1994) that is subject of debate, is the 
lack of interactions between seismic sources. More specifically, Dieterich’s seismicity rate theory assumes 
aftershocks are directly triggered by the stress changes induced by the mainshock. Effect of stress interactions 
between aftershocks is not accounted for. To circumvent this potential shortcoming of Dieterich’s theory, we 
apply the declustering algorithm of Zaliapin and co-workers (Zaliapin et al. 2008, Zaliapin and Ben-Zion 2013, 
Zaliapin and Ben-Zion 2016). This algorithm resolves complete triggering chains based on the relative space-
time-magnitude distances, originally introduced by Baiesi and Paczuski (2004). Only the main ingredients of 
the approach are given below, but the reader is referred to the papers of Zaliapin and co-workers for more 
details. 
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The declustering algorithm of Zaliapin et al. (2008) is based on space-time-magnitude distances between 
earthquakes 𝑖 and 𝑗 defined as (Baiesi and Paczuski 2004): 

𝜂௜௝ = ቊ
𝑡௜௝(𝑟௜௝)ௗ10ି௕௠೔ ,   𝑡௜௝ > 0;

∞,                            𝑡௜௝ ≤ 0.
       (5) 

𝑡௜௝ is the event intercurrence time in years, which is positive if event 𝑗 occurred after event 𝑖 (𝑡௜௝ = 𝑡௝ − 𝑡௜); 𝑟௜௝ ≥

0 is the spatial distance between the earthquake hypocenters in kilometers; 𝑚௜ is the magnitude of event 𝑖; 𝑑 
is the (possibly fractal) dimension of the hypocenters; and 𝑏 corresponds to the 𝑏-value of the Gutenberg-
Richter frequency-magnitude distribution. 

The nearest-neighbor distance for a given event 𝑗 is the minimum distance among 𝜂௜௝ where 𝑖 goes over all 

earlier events in the catalogue. The event 𝑖 that corresponds to the nearest-neighbor distance is called the 
nearest-neighbor, or parent, of event 𝑗. 

Zaliapin et al. (2008) proposed to consider the scalar distance 𝜂 in terms of its space and time components 
normalized by the magnitude of the parent event 𝑖 as: 

𝑇௜௝ = 𝑡௜௝10ି௤௕௠೔;  ℛ௜௝ = (𝑟௜௝)ௗ10ି௣௕௠೔;   𝑝 + 𝑞 = 1;   (6) 

And now: 

𝑙𝑜𝑔ଵ଴ 𝜂௜௝ = 𝑙𝑜𝑔ଵ଴ 𝑇௜௝ + 𝑙𝑜𝑔ଵ଴ ℛ௜௝.        (7) 

For our analysis, we fix 𝑏 = 1, 𝑑 = 1.6, and 𝑝 = 0.5 following Zaliapin and Ben-Zion (2016). Zaliapin and Ben-
Zion (2013) have demonstrated that the estimated cluster structure is stable with respect to the parameter 
values. Accordingly, our conclusions are expected to be non-sensitive to the precise parameter values. 

Zaliapin et al. (2008) and Zaliapin and Ben-Zion (2016) have shown that observed seismicity generally 
presents a bimodal joint distribution of (𝑙𝑜𝑔ଵ଴𝑇, 𝑙𝑜𝑔ଵ଴ℛ). In the present Oklahoma injection case, one mode 
corresponds to the independent mainshocks, whereas the other consists of clustered aftershock events 
located considerably closer in time and space to their parents. Figure 5 shows the 2D joint distributions of the 
rescaled time and space component (𝑇, ℛ) of the nearest-neighbor earthquake distance 𝜂. For Oklahoma, 
after applying the declustering step, the maximum yearly rate of mainshocks reaches roughly 120 event/year 
in 2015 (see Figure 5). 
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Figure 5: Declustering effect providing a separation between mainshocks and aftershocks induced by injection 
activities Left: all events of the catalogue (grey line) and independent mainshocks (black line). Right: Bimodal 
distribution of time and space components (𝑙𝑜𝑔ଵ଴𝑇, 𝑙𝑜𝑔ଵ଴ℛ) of the nearest-neighbor distance 𝜂. Each gray 
circle in these plots corresponds to an event in the seismicity catalogue. The location of the event in the (𝑙𝑜𝑔ଵ଴𝑇,
𝑙𝑜𝑔ଵ଴ℛ) plane provides information about the time and space distance to the event’s parent. The threshold 
value  𝑙𝑜𝑔ଵ଴ 𝜂଴ to separate the two modes is estimated used a 1D Gaussian mixture model applied to the 
logarithmic nearest-neighbor distances 𝑙𝑜𝑔ଵ଴ 𝜂௜௝ (Hicks, 2011). The red dashed diagonal lines depict 
the 𝑙𝑜𝑔ଵ଴ 𝜂଴. On the right of the red dashed diagonal line, independent mainshocks are indicated, while events 
on the left of the line are clustered aftershocks. 

2.5 DATA ASSIMILATION 

The objective of the data assimilation procedure is to determine the set(s) of model parameters in Dieterich’s 
(1994) seismicity rate theory (cf. Eq. 4) that give the best agreement between the observed seismicity rate and 
the computed rate. 

In order to compare the computed seismicity rates to the observed ones, both uncertainties in model (e.g., 
pore pressure distribution, fault orientation, stress calculation) and data (e.g., earthquake location) should be 
accounted for. We employed a Gaussian smoothing 𝜎௦ to the 𝑅஽ fields to incorporate uncertainties. As a result, 

the parameter set that needs to be optimized contains four parameters, i.e. [𝐴, 𝑟଴, 𝑆̇଴, 𝜎௦] (see previous section 
for definition of symbols). 

The log-likelihood is defined as the logarithm of the probability that one specific model (with one specific set 
of model parameters) has generated the observed earthquake catalog. For each set of model parameters the 
posterior log-likelihood is calculated in order to rank the models (Ogata, 1998; Zhuang et al., 2012). The model 
with the highest log-likelihood is most likely to have generated the observed seismicity catalogue. For our non-
homogeneous stationary Poisson process, and for a given time interval [t0, t1] and spatial area [x0,x1] x [y0,y1], 
the log-likelihood with respect to N observed earthquakes which have occurred at times ti and locations (xi,yi) 
is defined by the following function: 

𝑙𝑙 = ∑ log ቀ𝑅஽_௦௠௢ (𝑥𝑖, 𝑦𝑖, 𝑡𝑖)ቁ −  ∭ 𝑅஽_௦௠௢ (𝑥, 𝑦, 𝑡) 𝑑𝑥 𝑑𝑦 𝑑𝑡
௧ଵ,௫ଵ,௬ଵ

௧଴,௫଴,௬଴
ே
௜ୀଵ   (8) 

Following a Bayesian approach, and because we do not have a prior preference for the shape of the distribution 
of each model parameter, we attribute a bounded uniform a-priori probability distribution for each model 
parameter. The Markov Chain Monte Carlo (MCMC) algorithm is used to condition the data with these a-priori 
uniform distributions. 

The start of the time period where the data assimilation procedure is deployed is 1st January 2009, start of the 
observed seismicity, ending on 31 December 2017. Note that we apply our analysis to seismicity rate only. 
Incorporation of seismic magnitude requires further steps in the approach. Ideally, a joint log-likelihood is 
applied to assimilate both seismicity rate and seismic magnitude. However, in order to properly model the 
magnitude of induced events, a much more complex modelling strategy is required combining the nucleation 
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rate from Dieterich’s (1994) theory with, for example, the state of stress and energy available around each 
nucleation point (e.g., Noda et al., 2009; Schmitt et al., 2015; Dempsey and Suckale, 2016). As performed in 
previous studies at Oklahoma (e.g. Zhai et al., 2019), the nucleation rate could be combined with an arbitrary 
spatio-temporally frequency-magnitude distribution that is uniform and constant. However, applying such a 
procedure would bring additional uncertainties and, for the current purpose of the study, little additional value. 
Therefore, we focus the analysis on nucleation rate of seismic events alone. 

2.6 CONSTRAINED OPTIMIZATION 

After applying the data assimilation procedure, the best set of model parameters can be selected with which 
our predictive model is more likely to explain the observed induced seismicity rate. Using this calibrated 
predictive model and set of model parameters, the optimum injection strategy is determined. The aim is to 
prevent the peak of seismicity kicking off in 2014, while at least the same volume of injected brine is injected 
as has been historically reported for the area. The objective is to maximize the total cumulative field-wide 
injected brine volume. We include a threshold value for the seismicity rate as a constraint that cannot be 
exceeded. The objective (maximizing injected volume) and the constraint (minimizing seismicity rate) are 
expected to be conflicting. The identification of an injection strategy that meets both our objective and 
constraint is a complex task. The complexity is increased by the non-regular distribution of wells, and the time-
dependency of the geomechanical-seismological response (linking pore pressure diffusion and earthquake 
nucleation) to changes in injection rate. We therefore adopt a numerical optimization approach that aims to 
solve the following formalized problem: 

𝑢ො = argmax
௨

𝐽(𝑢)  subject to 𝑅(𝑢) <  𝑅௠௔௫  ;  𝐽(𝑢) > 𝐽௠௜௡   (9) 

The control vector 𝑢 contains the well injection rates which are constant during discretized time intervals, i.e. 
𝑢 = [𝑢ଵ

ଵ, 𝑢ଶ
ଵ, … , 𝑢ே೟

ଵ , 𝑢ଵ
ଶ, … , 𝑢ே೟

ேೢ] where the subscripts indicate the time interval, and the superscripts indicate the 
well. The total number of controls is expected to be very large in our scenario since there are more than 200 
wells and multiple time intervals. 𝐽(𝑢) is the total volume of injected brine, and 𝑅(𝑢) is the maximum field-wide 
yearly event rate. 𝐽௠௜௡ and 𝑅௠௔௫ are the historical total cumulative field-wide injected brine volume from January 
1995 to January 2018, and the threshold value of the field-wide yearly event rate during the same time period, 
respectively. 

We use the Stochastic Simplex Approximate Gradient (StoSAG) estimation method where the gradients are 
used in an advanced method for constrained optimization (Chen et al., 2009; Fonseca et al., 2014; 2017). An 
ensemble of randomly chosen control vectors (well injection rates) is generated and the stochastic gradient, 
total volume of brine injected and yearly event rate are computed. Based on the stochastic gradient direction, 
the controls are updated, and a new ensemble of perturbed controls is regenerated. This iterative process 
continues until there are no more significant changes in the total amount of brine injected or controls, or when 
a maximum number of iterations is reached (Figure 6). As an initial estimate for the controls we prescribe 
constant and equal rates for all wells, so that the cumulative injected volume matches the historical total 
injected volume. 
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Figure 6: Constrained optimization scheme. 

3 Results 

3.1 POSTERIOR MODEL PARAMETERS OF THE UNSTEADY OKLAHOMA FAULT SYSTEM 

The joint and marginal posterior probability distributions of the model parameters obtained after assimilation 
of the declustered catalogue over the period from 1st January 2009 to 31 December 2017 are well constrained 
(Figure 7). The median of the marginal posterior distributions of each model parameter define the best posterior 
estimates (𝐴 = 0.00027, 𝑟଴ = 18 𝑒𝑣𝑒𝑛𝑡/𝑦𝑒𝑎𝑟, 𝑆̇଴ = 0.0004 MPa/year, 𝜎௦ = 34 𝑘𝑚). With our modelling 
approach, the average effective normal stress is 44 MPa at 4km depth, which leads to the best posterior 

estimate of the characteristic relaxation time of seismicity, 𝑡௔ =
஺ఙ೙

ᇲ

ௌ̇బ
= 29.7 𝑦𝑒𝑎𝑟𝑠. 

The assimilation of observed events starts in 2009 when a significant earthquake activity started to be 
recorded. Consequently, the Dieterich (1994) seismicity rate equation (4) is solved assuming initial condition 
at steady state, that is 𝑅(0) = 1 in 2009. However, the start of the human-induced perturbation of the Oklahoma 
system by massive brine injections goes back to 1995, and hence it is most likely that the background activity 
was not at steady state in 2009. In fact, defining 𝑅ᇱ = 𝛽𝑅 and by operating a change of variable, we can show 
that 𝑅ᇱ satisfies an equation similar to equation (4) and reads: 

ௗோᇲ

ௗ௧
=

ோᇲ

஺ఙ೙
ᇲ /ௌ̇బ

ᇲ ቂ
ௌ̇

ௌ̇బ
ᇲ − 𝑅′ቃ    (10) 

with the unsteady initial condition 𝑅′(0) = 𝛽 in 2009, and the background stressing rate 𝑆̇଴
ᇱ = 𝑆̇଴/𝛽. Following 

equation (3), this solution corresponds to a background seismicity rate 𝑟଴
ᇱ = 𝑟଴/𝛽. This mathematical derivation 

implies that the background stressing rate 𝑆̇଴
ᇱ  and background seismicity rate 𝑟଴

ᇱ were 1/𝛽 times lower in 1995, 

at the start of injection when the Oklahoma system is assumed to be steady, compared to the values of 𝑆̇଴ and 
𝑟଴ inferred for 2009. The fault constitutive parameter 𝐴 is expected to remain constant in time. However, the 
background stressing rate and seismicity rate inferred for 2009 should not be interpreted as real steady state 
background values (before the start of human-induced perturbations by brine injections), but should be 
understood as “apparent background values”, which are actually the reference values at the initial time of the 
analysis, here 2009. The fact that the Oklahoma fault system was probably never at steady state since the 
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start of injection is an important aspect to acknowledge. During this transient phase caused by massive 
saltwater injections, the apparent background stressing rate and background seismicity rate are constantly 
increasing up to reaching the next steady state. 

 

 

Figure 7: Marginal and joint probability distributions of model parameters obtained with the MCMC search. 
Bounded uniform prior distributions for each model parameters are: 𝐴: U(1𝑒ିହ, 1.0), 𝑆̇଴: U(1𝑒ି଻, 1.0), 𝑟଴: 
U(0.001, 2𝑒ହ), 𝜎௦: U(1000, 50000) - with U(a, b) is a uniform distribution between a and b. 

 

3.2 TEMPORAL PATTERN 

A posterior ensemble of temporal yearly event rate predictions can be visualized by randomly picking members 
from the posterior density distributions obtained with the MCMC search. This ensemble can be compared with 
the data. However, it should be noted that the modelling strategy does not yet include the intrinsic Poisson 
variability of earthquake occurrence. The observed declustered catalogue is considered here as one unique 
realization of a stochastic, non-stationary Poisson process. Each posterior member of the modelling approach 
is one particular model of the time-dependent seismicity rate underlying the Poisson process. For an 
appropriate assessment of the predictive performance of our models, the stochastic Poisson variabilities need 
to be accounted for. For each posterior member, which can be considered as the mean of an underlying 
Poisson distribution, multiple synthetic catalogues are generated where the likelihoods of the event location 
and timing are proportional to the event density (Zhuang and Touati, 2015). Figure 8 shows that the posterior 
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predictions capture very well the temporal variation in observed seismicity. More specifically, our modelling 
strategy can predict: 

(1) the relative seismicity quiescence from 2009 to 2013, 
(2) the abrupt ramp-up of the seismicity rate starting in 2014, 
(3) the fast decrease of the seismicity rate starting in 2016 by the new measures imposed by the 

regulators. 
 

 

Figure 8: Comparison of the predicted seismicity histories with the data (black line). The model corresponds 
to 300 realizations (cyan) randomly drawn from the posterior density distribution obtained with the MCMC 
search during calibration. The mean of the models is indicated by the blue line. For each posterior member, 
30 synthetic catalogues are generated in order to account for stochastic Poisson variabilities. The grey region 
indicates 95% of the distribution of the 9000 synthetic catalogues when stochastic Poisson variabilities are 
accounted for. Top: cumulated number of events. Bottom: yearly event rate. 

 

3.3 SPATIAL PATTERN 

Predictions of spatial distribution of seismicity rate based on our modelling strategy can also be evaluated. 
Figure 9, Figure 10 and Figure 11 show a comparison of the spatio-temporal distribution observations and 
model forecasts for the relative seismicity rate, the smoothed event density, and the smoothed cumulative 
even density, respectively. For each of these figures, the median of the ensemble of posterior realizations is 
displayed. The overall spatio-temporal evolution of the observed seismicity is well reproduced by our modelling 
strategy. More specifically, the observed and modelled seismicity both start to increase (in 2009) at the center 
of the area of interest (i.e. central Oklahoma) and then progressively migrate outwards to finally be 
concentrated in the North-West. 
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Figure 9: Mean posterior fields of relative seismicity rate (/year) at 4km depth along the basement faults (same 
X-Y scale as Figure 3). The black dots indicate the observed events. 
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Figure 10: Mean posterior fields of smoothed event density (/km2) at 4km depth along the basement faults 
(same X-Y scale as Figure 3). The black dots indicate the observed events. 
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Figure 11: Mean posterior fields of smoothed cumulated event density (/km2) at 4km depth along the basement 
faults (same X-Y scale as Figure 3). The black dots indicate the observed events. 

 

3.4 TOWARDS AN OPTIMUM INJECTION STRATEGY 

Two optimization experiments have been performed. For both experiments we seek to find the optimum 
injection strategy for each well leading to a total volume of injected brine that is at minimum equal to the total 
historic injected volume while keeping the yearly event rate below a certain threshold. This threshold is set to 
25 events/year in order to avoid the peak of seismicity rate starting in 2014. 

For the first experiment, we define one constant injection rate for each well during the entire history of injection 
(from January 1995 to January 2018) and estimate the seismicity rate based on one unique simulated pressure 
field output at the end of 2017. For a more elaborate estimate of the seismicity rate, the pressure fields should 
be simulated on a yearly basis. However, the focus of this experiment is to test the performance of the 
optimizer. For each iteration, the number of perturbations is set to 50 to appropriately compute the stochastic 
gradients. The optimizer successfully converged towards an optimum solution which satisfies both constraints: 
(1) the total volume injected is more than twice the historical total volume injected, and (2) the yearly event 
rate is 20.02 which is below the threshold of 25 event/year. 

After gaining confidence in the performance of the optimizer with the first experiment, a more complex and 
realistic experiment is performed with well controls that can be adjusted every 5 years and with pressure fields 
and simulated seismicity rates that are provided yearly. For this second experiment, 100 perturbations are 
used to compute the stochastic gradient. The optimized strategy leads to 1.7 times more brine stored relatively 
to the historical total injected volume (Figure 12), and the maximum yearly event rate remains at 22.5, below 
the imposed threshold of 25 event/year. To reach this optimum injection strategy, the field-wide yearly injection 
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rate needs to be kept almost constant during the entire injection period. This strategy results in a roughly linear 
increase of the cumulative total volume with time (Figure 12).  

 

Figure 12: Optimized injection strategy. Left: field-wide cumulative volume of injected saltwater (historical 
scenario in black, initial estimate for the optimization experiment in cyan, and optimum scenario in blue). Right: 
well injection rates (m3/day) in 2015 for the historical (bottom, the color scale is defined with a maximum of 
1000 m3/day) and optimized scenario (top). 

 

At the optimum strategy, the spatial distribution of the injection rates at each well, even if heterogenous, 
presents a lower variability relatively to the historical scenario (Figure 12). Distributing more uniformly in space 
and time the injected volume of brines, the optimum strategy leads to more uniform spatio-temporal pore 
pressure changes (Figure 13). Consequently, the Coulomb stress rates (induced by both the direct pore 
pressure changes and the poro-elastic loading) are more uniformly distributed and remains relatively lower as 
shown for 2015 in Figure 13. More specifically, the localized high Coulomb stress rates at the origin of the 
historical peak in seismicity starting in 2014 are prevented. 
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Figure 13: Comparison of the changes in pore pressure (up, in MPa) and Coulomb stress rate (down, in 
MPa/year) in 2015 between the historical (left) and optimized (right) scenarios. All the fields are assessed at 
4km depth along the basement faults, and the same X-Y scale as Figure 3 is used. Note the difference in the 
color scale between the historical and optimized Coulomb stress rate. 

4 Concluding Discussion 
We present a three-step constrained optimization workflow that outlines injection scenarios for maximizing 
injected volume under a constraint imposed by seismicity rates. It represents a physics-based predictive 
workflow that ensures that simulated seismicity is consistent with observed seismicity. For massive wastewater 
injection around Oklahoma, the workflow can test multiple injection scenarios to find an optimum scenario 
which maximizes the total volume injected while avoiding the sharp increase of seismicity as observed in 2014. 
This increase led to the regulatory measures and ultimately to the shut-down of the injection. 

In the first step of the workflow, a forward modelling strategy is designed that honors as much as possible all 
available prior knowledge from central Oklahoma. It includes information on (i) geology and flow which are 
used to set up flow simulations, and (ii) in-situ stress conditions, fault orientations, observed seismicity and 
prime physical processes controlling it, which are used to deploy the geomechanical and seismological 
analysis. Flow simulations are performed by using the open source OPM-FLOW simulator which uses historical 
monthly injection rates of each well at central Oklahoma as input. With the approach, robust spatio-temporal 
pressure distributions have been computed, including complex flow interaction between the more than 200 
wells at central Oklahoma. With the simulations, the pore pressure at the nucleation depth of seismic events 
(placed at 4 km depth based on observations) in the basement was accurately captured. These changes in 
pore pressure are the main drivers of the two physical processes controlling the nucleation of induced 
earthquakes in central Oklahoma: the direct decrease in the effective normal stress at fault due to the pore 
pressure increase (Norbeck and Horne, 2016; Langenbruch and Zoback, 2016; Dempsey and Riffault, 2019), 
and the poro-elastic loading caused by the changes in the rock volume when its pore pressure is increased 
(Goebel et al., 2017; Zhai et al., 2019). The stress contribution from the poro-elastic loading has been derived 
from the mechanical simulator MACRIS (van Wees et al., 2019; Candela et al., 2019). MACRIS is based on a 
newly developed mesh-free approach, which can (1) directly use 3D pressure fields from OPM-FLOW as input 
for geomechanical modelling, and (2) acquire high stress resolution at the interface of interest (the horizontal-
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plane at 4km depth in the Oklahoma case). Coulomb stress changes have been combined with Dieterich’s 
theory (Dieterich, 1994) to model the spatio-temporal evolution of the seismicity rate. 

In the second, step the seismicity data is assimilated in order to update the model parameters of the forward 
model from the first step. Data assimilation is used to assess the predictive power of the forward model by 
comparing simulated and historical seismicity rates. This assimilation step has often not been considered in 
previous studies of induced seismicity at Oklahoma injection sites. Generally, a sensitivity analysis for temporal 
predictions of induced seismicity is performed (e.g., Zhai et al., 2019). In the current workflow, the seismicity 
data has been assimilated in both space and time (see also Candela et al., 2019). It has been demonstrated 
that the distribution of seismicity in both space and time can be used to constrain the posterior distributions of 
model parameters. We showed that the field-wide modelled yearly event rate and the modelled spatio-temporal 
event density are both successfully capturing the spatio-temporal distributions of observed events. It confirmed 
the predictive power of our modelling strategy that aims to honor the ensemble of available prior information 
for the Oklahoma injection sites. Although not performed in the present study, the results suggest that the 
approach is suitable to forecast the potential return of the Oklahoma induced seismicity to the background rate 
following the arrest of all injection activities (Langenbruch et al., 2018; Zhai et al., 2019).  

In the third step, an optimization approach is outlined that aims to find an optimum spatio-temporal injection 
scheme in order to maximize the total volume injected while keeping the seismicity rate below a cap. The cap 
is chosen so that the stop of the injection activities in April 2017 may be prevented as seismicity remains below 
a threshold value. 

The present study combines both cutting-edge physics-based predictive models with a cutting-edge 
optimization algorithm. Despite that the modelling framework is applied to the Oklahoma case study, the 
primary objective was to demonstrate that complex optimization problems with two conflicting objectives 
involving full physics-based models for flow, geomechanics and induced seismicity can be solved. The 
modelling framework is based on existing workflows that were originally deployed for the optimization of well 
planning for hydrocarbon recovery (Chen et al., 2009; Fonseca et al., 2014; 2017), and adjusted for the specific 
constrained optimization problem. As such this modelling framework can thus be seen as generic and can be 
applied to other instances of anthropogenic subsurface activities as for example but not limited to that carbon 
storage and sequestration. 

We showed that it likely would have been possible to avoid the dramatic rise of the rate of seismicity starting 
in 2014 while still injecting a total volume of fluid that is ~1.7 times larger than the historical injected volume. 
The optimum strategy involved more uniform spatio-temporal distributions of the injection rates, resulting in 
changes in pore pressure that are smoother and more uniformly spread in space and time relatively to the 
historical scenario. The use of injections at peripheral wells (that is distributed at the edges of the area of 
interest) were favored in order to prevent clustering of well injection activities in space and time that caused 
the historical high seismicity rates. 

More constraints should be added to the present approach in order to include additional key factors which 
have influenced the spatio-temporal historical distribution of the injection rates. As an example, the use of wells 
for injection should be constrained by additional parameters such as the supply of hydraulic fracturing and 
formation fluids from nearby shale gas sites as the fluid brine injected in the Arbuckle aquifer is a waste-product 
of production of shale gas. Accordingly, a spatio-temporal correlation between injection volumes and shale 
gas operations in the area is likely. In the current optimization example, it is assumed that all wells were 
available at any moment in time. One way to honor the correlation between shale gas operations and injection 
is to add a cost constraint in the optimization, i.e. injections via wells that were not used in historical injection 
should be penalized with a higher cost. This additional implementation can be achieved with the present 
optimization algorithm. 
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