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Public introduction 

 

Subsurface Evaluation of CCS and Unconventional Risks (SECURe) is gathering unbiased, 
impartial scientific evidence for risk mitigation and monitoring for environmental protection to 
underpin subsurface geoenergy development. The main outputs of SECURe comprise 
recommendations for best practice for unconventional hydrocarbon production and geological 
CO2 storage. The project is funded from June 2018–May 2021. 

The project is developing monitoring and mitigation strategies for the full geoenergy project 
lifecycle; by assessing plausible hazards and monitoring associated environmental risks. This is 
achieved through a program of experimental research and advanced technology development that 
includes demonstration at commercial and research facilities to formulate best practice. We will 
meet stakeholder needs; from the design of monitoring and mitigation strategies relevant to 
operators and regulators, to developing communication strategies to provide a greater level of 
understanding of the potential impacts. 

The SECURe partnership comprises major research and commercial organisations from countries 
that host shale gas and CCS industries at different stages of operation (from permitted to closed). 
We are forming a durable international partnership with non-European groups; providing 
international access to study sites, creating links between projects and increasing our collective 
capability through exchange of scientific staff. 
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Executive report summary 

This report is part of WP2 of the H2020 project SECURe. WP2 deals with risk assessment 
procedures for CO2 storage and unconventional gas operations. Amongst the various threats 
considered in Geoenergy projects, the risk of induced seismicity is an important one as it already 
leads to paused or stopped deep geothermal, shale gas or conventional gas projects and is thus 
one of the main concerns of stakeholders. This report deals with models for induced seismicity as 
a tool for assessing its risk and is designed mainly for researchers and engineers interested in risk 
assessment of induced seismicity. 

The objectives of this report are to provide an overview of existing modelling approaches of 
induced seismicity, and to assess their application with real data and case studies of CO2 storage 
and unconventional gas exploitation.  

We present many examples of models developed for a variety of subjects: natural earthquakes, 
deep geothermal energy, unconventional gas exploitation, wastewater injection, and CO2 storage. 
Models are grouped in three categories: statistical models, physics-based models, and hybrid 
models. Each type of model has its own advantages and drawbacks. Statistical models were 
developed for short-term forecasting and risk assessment, are fast to run and contains fewer 
parameters so they can be fitted with data more easily. However, they cannot provide insights into 
the underlying mechanisms. This is one of the main purposes of physics-based models, which are 
thus more adapted for longer term forecasts and risk assessment. One of the drawbacks is that 
the results are often deterministic and their use in risk assessment is not straightforward. They are 
also considerably more computationally time-consuming than the simple statistical models. Hybrid 
models are developed in order to find a compromise between the two approaches, where 
parameters of a statistical model are informed by physical parameters computed in a numerical 
model. This approach may be the most promising for the use in induced seismicity risk 
assessments as it is able to compute a risk while providing the necessary evidence for analysing 
the results. 

A popular type of statistical model is the ETAS model. This model is tested with data from a CO2 
storage pilot and from wastewater injection in Oklahoma, USA. The analysis shows the complexity 
of real data and the difficulty of correlating operation parameters with observed seismicity. More 
work is thus needed for adapting the model to induced seismicity. It also shows that an approach 
not considering the full range of uncertainties will be too biased and thus detrimental in a risk 
assessment context. 
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1 Introduction 
Induced seismicity is one of the main concerns regarding subsurface Geoenergy projects. In particular, 
induced seismicity felt at the surface is a show stopper as happened for instance in Basel in the case of a deep 
geothermal project (Häring et al. 2008) or more recently in the UK during tests for shale gas exploitation 
(Energy post, 2019). Recent cases linked with unconventional gas production are, for example, detailed in 
Davies et al. (2013) and Porter et al. (2019). 

Induced seismicity occurs when a fault or a fracture in the subsurface is subject to a change of stress which 
leads to its failure and a sudden release of energy. Here, we say that it is induced when the change of stress 
is primarily due to a change in pore pressure which is the result of subsurface exploitation such as injection of 
fluids (the next chapter will provide a more in depth review of the various mechanisms involved in induced 
seismicity). Most of induced seismicity is micro-seismicity1: it is part of the process of subsurface operations, 
and it cannot be felt at the surface. In some cases, such as deep geothermal energy, it is even necessary to 
correlate induced seismicity with fracture aperture, which enhances the circulation of fluids in the deep 
subsurface. However, when this seismicity is not monitored, analysed and managed, there is a possibility to 
induce larger events which can be felt at the surface. Managing this risk is thus mandatory for most subsurface 
geonenergy projects. 

Risk assessment is the part of risk management2 that seeks to understand the risk. In a simple form, to assess 
the risk is to answer these three questions (Stamatelatos et al. 2011): 

1. What can go wrong? 
2. How likely is it? 
3. What are the associated consequences? 

For the first question, we usually need to look at all the failure modes in a system and build a comprehensive 
set of risk scenarios. This is one of the objective of SECURe work package 2, and in particular task 2.1 “Risk 
assessment framework and scenario analysis”. Task 2.2 looks at the risk related to well integrity, task 2.3 to 
the assessment of faults and fractures potential to leak. This report is part of task 2.4 on surface deformation 
and induced seismicity. Specifically, we focus on the risk of felt induced seismicity provoked by subsurface 
operations. Regarding the third question, a preliminary answer is: nuisances at the surface, potential damage 
of surface infrastructure and cessation of the project. The objective of this report is to provide information and 
knowledge for answering the second question: how likely is it. In particular, the main topic is on modelling 
approaches as a tool for assessing the risk (mainly likelihood) of felt induced seismicity due to subsurface 
operations. 

In the second chapter of this report, after a brief overview of theoretical aspects, we will provide a review of 
published models and modelling case studies. In the third chapter, we provide some details on some of the 
models. The fourth chapter deals with data analysis with the ETAS model on real case studies. The fifth chapter 
provides recommendations regarding the use of the models for managing risks related to induced seismicity. 

  

                                                      

1 Micro-seismicity are events that are not felt by the population. Typically they have a local magnitude below 
2. More details can be found in SECURe deliverable D2.1.  
2 SECURe project’s organisation closely follows risk management principles : work package (WP) 2 study risk 
assessment, WP3 and 4 deal with risk monitoring, WP5 is risk mitigation, and WP6 risk communication. All 
public deliverables can be accessed here: https://www.securegeoenergy.eu/  
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2 State of the art 
This study focusses only on models to analyse induced seismicity events, i.e. the approach should be able to 
forecast. Purely observation-based traffic light system approaches (e.g. Bommer, 2006 or Häring, 2008) are 
therefore excluded, which can be used for guiding real-time decisions on field operations, but are not meant 
to predict future seismicity.  

A wide range of approaches for modelling induced seismicity caused by varying subsurface activities has been 
reported in literature. These modelling approaches can give further insights in the way operational conditions 
and local geology, hydrogeology and mechanical characteristics of the reservoir will affect the main processes 
driving induced seismicity. Dominant driving processes of induced seismicity are pore pressure diffusion, 
poroelasticity, thermoelasticity, stress transfer and chemical changes, causing either stress changes on faults 
or alterations of fault properties which ultimately may cause a seismic response of the rocks. The choice and 
added value of a certain approach for modelling fault reactivation and/or induced seismicity will depend both 
on the specific question that needs to be addressed and on the timing in relation to the subsurface operations 
(i.e. models can be used either before, during or after the subsurface operations, e.g. for a priori assessment 
of seismic hazard, as component of an Adaptive Traffic Light System, or to analyze causality of observed 
seismicity and operations). This means that the specific choice of model type and complexity should be based 
on the problem at hand. As such, there is no ‘best-practice’ or preferred approach for modelling fault 
reactivation and induced seismicity related to either CO2 injection and storage or waste water injection related 
to shale gas operations. Here we give a short and high-level overview of different modelling approaches for 
induced seismicity and shortly address the applicability and limitations of the different modelling approaches. 

2.1 THEORY 

Vilarrasa et al. (2019), White and Foxall (2016) or Gaucher et al. (2015) provide good overviews of the 
underlying mechanisms. The basic principle is that operation in the subsurface leads to pore pressure 
changes. This change in pore pressure leads to a variation of in-situ stress, either directly or indirectly. This 
variation then has the potential to shift a fault or fracture into an unstable state provoking seismicity.  

In summary, the important phenomena are:  

 Initial in-situ stress 
 Initial state of faults and fractures (i.e. how close are they to failure) 
 Pore pressure changes 
 Effect on stress changes 

Vilarrasa et al. (2019) highlight that stress variations are not only due to the hydraulic effect but by a variety of 
complex coupled factors. In particular, there are two effects which are important in understanding observations, 
the poroelastic effect and stress redistribution effect (Segall and Lu, 2015). The poroelastic effect describes 
the situation when stress is modified by redistribution of stress following pore pressure change. This effect 
explains why seismicity occurs also in oil and gas production where pressure decreases. The stress 
redistribution is due to stress drops provoked by each event, which also have the potential to trigger new 
events. This is the main mechanisms behind aftershocks following a larger mainshock.  

These complex factors explain why modelling induced seismicity is a challenge, and why simple correlations 
with operational parameters do not give satisfying results for a proper risk assessment. But as in any modelling 
effort, a balance between increasing the complexity of the model, increasing the forecasting performance, and 
computational efficiency is required. 

2.2 APPLICATIONS 

We distinguish between two endmembers of induced seismicity models, i.e. fully stochastic and fully physics-
based models. The purely stochastic (or statistical) models do not, or only to a very limited extent, incorporate 
the underlying physical processes and mechanisms of fault reactivation and induced seismicity. This means 
stochastic models, as compared to physics-based models, need only a limited number of physical parameters 
as input. Though generally robust and efficient, fully stochastic models rely heavily on calibration against 
observed induced seismicity. The stochastic approaches are often used to reproduce catalogues of observed 
induced seismicity in order to forecast seismic events in near real-time (Gaucher et al., 2015). This means 
they can be run in near real-time, for example to forecast seismic hazard in the near future in Advanced Traffic 



 

 3 Copyright © SECURe 2020 

Light Systems (ATLS). In contrast to fully stochastic models, physics-based models try to capture the main 
physical processes which cause fault reactivation and associated seismic events. In that sense physics-based 
models can increase the understanding of mechanisms causing induced seismicity and be used to explore 
scenarios of varying geological or operational factors. Fully physics-based models generally require more, 
often poorly constrained, input parameters and can be computationally intensive. In between these two 
endmembers, hybrid models combine physical-based and statistical approaches. To ensure computational 
efficiency, hybrid seismicity models aim to capture the key physical processes of induced seismicity in a 
simplified manner. The relatively fast hybrid models allow for a random sampling of model parameters and can 
be used to give probability distributions of modelling results and incorporate uncertainties in model outcome. 

In this section we will review and explain the different approaches in the literature, with a special focus on risk 
assessment. As mentioned in the introduction, assessing the risk requires at least an element of likelihood 
(generally expressed as a probability), and an element of consequence. Usually models will simulate events 
with a given magnitude, but a magnitude is not a consequence. Ultimately, risk should be expressed as a form 
of loss (Bommer et al. 2015). Expressing the result in terms of ground motion or felt intensity is a good practice 
(Porter et al., 2019). 

2.2.1 Statistical approaches 

The first study that developed statistical approaches for geothermal induced seismicity was Bachmann et al. 
(2011), with the objective of short-term forecasting for improving the Traffic-Light System protocol. Two models 
are tested in this paper: The so-called Reasenberg & Jones model and the ETAS (Epidemic Type Aftershock 
Sequence) model. Both models were initially developed and are widely used for simulating aftershock 
sequences for natural earthquakes (Zhuang et al. 2012) and were adapted here by the authors for application 
to induced seismicity. They compare their forecasting capabilities on the data of the Basel case study in a 
pseudo-prospective manner. They only use flow rate as input to the ETAS model and find that this particular 
model performs best. An interesting aspect is that they use the models for computing probabilities of exceeding 
a ground motion intensity level, a step in the direction of risk assessment. 

Mena et al. (2013) extended this work by adding to the two previous models a new family of models: the 
Shapiro model (from Shapiro et al., 2010). This model was specifically developed for injection-induced 
seismicity, following the observation that the number of earthquakes larger than some given magnitude 
increases approximately proportionally to the injected fluid volume. An interesting aspect of this paper is that 
the model which gives the best forecasting performance is actually an ensemble model obtained by combining 
the three models based on Akaike weights. Similar models have been tested also using a Bayesian framework 
for inferring the parameters (Broccardo et al., 2017) or in a formal decision setting in the context of Advanced 
Traffic Light Systems (Mignan et al. 2017). 

These models propose a number of advantages for short term forecasting: as they are very fast and have 
relatively few parameters, it is possible to use them with data assimilation in quasi real time. This type of use 
would be very difficult with more complex models which can have many free parameters and are much slower 
to run. The obvious drawbacks are that they are not very helpful for understanding the underlying mechanisms.  

In the context of wastewater injection associated with shale gas production in the Midwest US (i.e. in Oklahoma 
and surrounding states), Llenos and Michael (2013) have fitted an ETAS model to the data. Their conclusion 
is that the model does not reproduce the observation and thus the seismicity has anthropogenic origin. They 
however do not try a modified ETAS model taking account of injection parameters. Wang et al. (2016) use 
Bayesian inference to fit different non-stationary versions of the ETAS model. They find that a model with a 
base rate function increasing in several steps fits the observations well. The same group also extended the 
model to take account of spatial heterogeneity (Wang et al., 2017). The main drawback of this approach is that 
they do not consider injection parameters, only seismic data. This means that their particular model will not fit 
another dataset, even if the same type of approach is highly transposable. 

Bourne and Oates (2017) also adapted the ETAS model in the context of a depleted reservoir in the 
Netherlands, which showed problematic seismicity due to decades of (conventional) gas production. 

Langenbruch and Zoback (2016) adapted the Shapiro model to wastewater injection (associated with Shale 
gas production) in Oklahoma, USA. Their aim was to forecast how seismicity would change following new 
regulation imposing a reduction of injection rates. They introduced new parameters to account for a regional 
forecast. 

Statistical models have also been tested in the context of hydraulic fracturing by Verdon and Budge (2018). 
They tested two models in a pseudo-prospective manner: the seismogenic index (or Shapiro model from 
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Shapiro et al., 2010) and the seismic efficiency model from Hallo et al. (2014). This last model is based on the 
observation that the cumulative moment release is proportional to the cumulative injected volume. However, 
the paper does not formally assess (e.g. with log likelihood) the forecasting capabilities of both models and it 
is not possible to state which model performs better. The same approach was followed by Clarke et al. (2019) 
on the Preston New Road case in England. They assess different versions of the seismic efficiency model by 
testing different scaling factors. 

To our knowledge, this empirical or statistical approach has not been tested on a CO2 storage site (White and 
Foxall, 2016). Chapter 4 looks at the utilisation of the ETAS model with data sets from CO2 storage as well as 
shale gas exploitation. 

2.2.2 Physics-based models 

Many groups have developed physics-based models of induced seismicity and it is beyond the scope of this 
report to provide an exhaustive review. We will rather highlight more recent and/or original approaches used 
in the fields of CO2 storage and unconventional gas exploitation. These applications are relatively new 
compared to the work of deep geothermal energy. For a comprehensive review of models used in this context: 
see Gaucher et al. (2015). 

Induced seismicity related to unconventional gas exploitation can come from two sources: the hydraulic 
fracturing process itself, or wastewater co-produced with the gas that is sometimes reinjected in a deep aquifer 
(Mitchell and Green, 2017). As noted by Mitchell and Green (2017), physics-based modelling is very complex, 
requires simplifying assumptions and remains difficult and uncertain. 

2.2.2.1 WASTEWATER INJECTION 

Norbeck and Rubinstein (2018) developed a hydromechanical model for the case of wastewater injection in 
Oklahoma. They use a simple equation in order to derive the rate of stress change from injection parameters. 
They then use a rate-and-state friction model to relate this rate of stress change to a rate of seismicity change. 
They compare their forecasts with forecasts using the model from Langenbruch and Zoback (2016) and find 
that each model gives more accurate forecasts than the other depending on the time (e.g. onset vs post-
injection). 

A similar approach was followed by Dempsey and Riffault (2019): combining a simplified numerical 
hydrological model for predicting pressure changes, which then uses the same type of rate-and-state friction 
model to provide estimates of seismicity rate changes. 

Recently, Zhai et al. (2019) have proposed an updated model following the same principles. They however 
chose a more complex geomechanical model which allows considering the poroelastic stress in addition to 
only pore pressure changes.  

2.2.2.2 CO2 INJECTION 

In CO2 storage, as there is very little observed seismicity, the bulk of the work in the literature consists mainly 
on modelling exercises in synthetic configurations, e.g. Rinaldi et al. (2014) or Mortezai & Vahedifard (2015). 
However, it may become a key consideration as CO2 storage operations aim to increase injection volumes in 
future projects. Also, thermoelastic effects due to cooling of the storage reservoir are particularly important in 
case of injection of cold CO2. 

Verdon et al. (2011) built a geomechanical model of the Weyburn demonstration site. Their initial goal is not 
to forecast induced seismicity but rather to use the observed seismicity for constraining their model. They show 
that in order to better fit the observations, their geomechanical parameters were in disagreement with lab 
measurements, highlighting the difficulty of upscaling such measurements. The same type of workflow was 
also tested on the In-Salah dataset (Verdon et al., 2015) where induced seismicity data are used to check the 
accuracy of the geomechanical model. This model is built after history matching of observed downhole 
pressure. 

Rutqvist et al. (2014) test a full chain model from CO2 injection to surface ground motion. They use a 
hydromechanical 3D model by coupling the codes TOUGH2 and FLAC3D. This approach is interesting as it 
allows to have a better grasp of the actual consequences. However their work is purely model-based and 
generic, i.e. it is not related to an actual site. 



 

 5 Copyright © SECURe 2020 

2.2.3 Hybrid models 

Hybrid models were first proposed by Goertz-Allmann and Wiemer (2013) for deep geothermal energy 
applications. They call it hybrid because it relies on a geomechanical model that computes stress changes and 
uses a Mohr-Coulomb failure criterion. They use a correlation between computed stress drop and varying b 
values. However, they add stochastic elements to it: the initial position and stress state is randomly assigned, 
and a magnitude is drawn from a Gutenberg Richter (GR) relationship using the computed b-value. 

This model was improved by Gischig and Wiemer (2013) mainly by adding non-linearity in the pressure 
diffusion aspect. A 3D extended version was checked against an improved version of the Shapiro model (see 
paragraph 2.2.1) by Király‐Proag et al. (2016). They found that the hybrid model is generally better for the 
post-injection period, but the statistical model actually performed better during injection. Their approach of 
rigorous comparison of models is also interesting (otherwise all models give “good results” on their own). 

Langenbruch et al. (2018) developed a hybrid model for the case of wastewater injection in Oklahoma and 
Kansas. They rely on the “Shapiro” model by computing a seismogenic index (SI). With respect to the previous 
work by Langenbruch and Zoback (2016) they do not consider flow rate as input but instead compute the 
evolution of pressure in the reservoir and the basement using hydrogeological numerical modelling. They also 
discretise the SI in 3D to account for heterogeneities in the distribution of faults. 

2.3 ADDITIONAL THOUGHTS 

This review highlights that depending on their characteristics, models have various advantages and 
drawbacks. In theory, the hybrid approach seems promising as it builds on the strengths of both statistical and 
physics-based approaches: computationally fast, stochastic assessment, underlying physical explanation. 
However, in practice only a rigorous benchmarking exercise on the same data set could allow to formally 
compare the various modelling approaches. 

Here are some further thoughts on the criteria that could be used in order to judge the models: 

 Speed of computation 
 Complexity (number of free parameters) 
 Performance in short term forecasting 
 Performance in scenario forecasting (i.e. ability to model situations different than the one 

corresponding to the current observations) 
 Representation of uncertainties 
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3 Presentation of the models 
In this chapter we get into more details regarding the main types of models that were evoked in the previous 
chapter. We focus first on the statistical models before we give a more in-depth coverage of the physics-based 
models. 

3.1 STATISTICAL MODELS 

3.1.1 ETAS model 

This section presents the general description of a statistical model based on Epidemic-type Aftershock 
Sequence model (ETAS) by Ogata (1988). The ETAS model was able to be extended as spatio-temporal 
model (Ogata and Zhuang, 2006). For the purpose of the injection-induced seismicity, we study a localized 
seismicity related to a single injection site (Case 4.1) and regional case due to many injection wells (Case 4.2). 
For the former, we do not consider a spatial extension. For the latter, we apply the mode by dividing many 
subareas. Thus, we adopt only the original ETAS model describing the temporal variation of seismicity in this 
study. 

3.1.1.1 PRESENTATION 

Figure 1 illustrates the basic concept of Epidemic-Type Aftershock Sequence (ETAS). The basic concept is 
that every earthquake triggers its own aftershock sequences, so that the observed seismicity is a combination 
of background and triggered seismicity. Ogata (1983, 1988) propose to describe this process as  

𝜆(𝑡) = 𝜇 + 𝐾 ∑
ୣ୶୮ (ఈ(ெ೔ିெ೎)

(௧ି௧೔ା௖)೛௧೔ழ௧  (1) 

where the observed seismicity rate 𝜆(𝑡) (generally daily earthquake numbers) is the summation of the 
background seismicity rate 𝜇 and the triggered part of the second term. The past earthquakes having occurred 
at time 𝑡 =  𝑡௜ triggers the seismicity depending on magnitude 𝑀௜ which decays with time according to Omori’s 
law. 𝑀௖ is the cut-off magnitude, above which the observed catalogue is supposed to be complete in terms of 
magnitude-frequency scaling (Gutenberg-Richter law) and the consequent seismicity rate is calculated for 
earthquakes of magnitude 𝑀 ≥ 𝑀௖. There are five parameters (𝜇, Κ, 𝛼, 𝑐, 𝑝) to be determined from the given 
seismicity catalogue. In other words, we can calculate the forecast of the seismicity once these parameters 
are given.  

The principal difficulty for induced seismicity is that the parameter 𝜇 may not be stationary and characterizing 
its temporal change is a research topic in itself. There would in principle be two possibilities:  

1) Assume the stationarity of the seismicity in a limited period. This approximation can be possible if 
there are sufficient earthquakes.  

2) Describe the form of 𝝁 by any equation, 𝜇 = 𝑓(𝑡; 𝑃, 𝑉), which can be an equation of time but also a 
function of operational factors such as pressure 𝑃 and volume 𝑉.  
a) Post-injection phase for which 𝑃, 𝑉 does not evolve any more (Maury et al. 2019). For such case, 

the background seismicity is expected to decrease gradually.  
 

𝜆(𝑡) = 𝜇଴ + Β ∙ exp (−𝛾(𝑡 − 𝑡ௌ)) + 𝐾 ∑
ୣ୶୮ (ఈ(ெ೔ିெ೎)

(௧ି௧೔ା௖)೛௧೔ழ௧  (2) 

where (𝜇଴, Β, 𝛾) are free parameters and 𝑡ௌ is the time of end of injection (known). At the end of the 

injection the background seismicity has a rate of (𝜇଴ + Β) and then this decreases to 𝜇଴. 
b) During the injection when (𝑃, 𝑉) may influence directly the seismicity. For example, one can assume 

that Coulomb stress change may trigger the background seismicity such as  

𝜆(𝑡) = 𝜇଴ + 𝐷 × ∆𝐶𝐹𝐹 + 𝐾 ∑
ୣ୶୮ (ఈ(ெ೔ିெ೎)

(௧ି௧೔ା௖)೛௧೔ழ௧   (3) 

where the Coulomb stress change is calculated by shear and normal stresses as ∆𝐶𝐹𝐹 = 𝜏௦௛௘௔௥ +
 𝜇௙𝜏௡௢௥௠௔௟ (𝜇௙ is the frictional coefficient).  
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Figure 1: Basic concept of Epidemic-Type Aftershock Sequence (ETAS) model. Every earthquake 
triggers its own aftershock sequences governed by Omori law. 

3.1.1.2 MODELLING 

The ETAS model (as most statistical models of earthquakes) is based on a Poisson process with a time varying 
rate 𝜆(𝑡) (Zhuang et al. 2012). The main principle for modelling such a process is to consider the integral of 
the conditional intensity: 

Λ(𝑡) =  න 𝜆(𝑡)𝑑𝑡
௧

଴

 

We then consider the time change 𝜏 = Λ(𝑡) from 𝑡 to 𝜏, then {𝑡௜} is transformed one-to-one into {𝜏௜}. Then, {𝜏௜} 
has the distribution of a stationary Poisson process of intensity 1 (Ogata, 1988). 

Remembering that the distribution of inter-times in a Poisson process follows an exponential distribution, this 
useful result allows us to use the following algorithm for performing forward modelling of ETAS (or any model 
with time varying intensity rate): 

1. Define the parameters 𝜃; in the case of the ETAS model it is {𝜇; 𝐾; 𝛼; 𝑀஼ ; 𝑐; 𝑝} 
2. 𝜏଴ = 0; Λ(𝑡) = 𝜇 
3. Sample 𝑟 from an exponential distribution of rate 1 
4. 𝜏௜ = 𝜏௜ିଵ + 𝑟 
5. Solve for 𝑡௜ the following equation: Λ(𝑡௜) = 𝜏௜ 
6. Draw the corresponding magnitude from Gutenberg-Richter’s law with a predefined β: Pr(𝑀𝑎𝑔 > 𝑀) =

𝑒ିఉெ 
7. Compute Λ(𝑡) for 𝑡 > 𝑡௜  
8. Repeat from step 3 until an ending condition is met. 

3 remarks:  

 Λ(𝑡) is straightforward to compute but the form will be different whether 𝑝 = 1 or not. 
 Step 4 is complex (impossible?) to do analytically so a root-finding numerical method is used instead 
 Magnitudes are considered independent from rates. Actually, the risk increases with the rates only 

because by having more events it becomes more probable that a bigger one would “come out”. 

This algorithm was coded using standard scientific Python libraries. An example of a simulation with typical 
parameters (taken from Ogata, 1988) is displayed below.  
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Figure 2: Simulation of the ETAS model. Red dots are the simulated events; the blue line is the 
corresponding intensity rate 𝝀(𝒕). Left figure is the whole simulation; on the right is a zoom on the 
period with the highest density of events. Flow rate is 0 and is not visible on the figure 

We can see in this figure the effect of largest events on the rate function. Note here that no injection parameters 
have been introduced so this corresponds to a simulation of natural earthquakes. 

We can simulate induced seismicity by changing the base rate 𝜇 in the following way (Bachmann, et al. 2011): 

𝜇 = 𝜇଴ + 𝑐௙𝐹௥(𝑡) 

Where 𝜇଴ is a constant rate, 𝐹௥(𝑡) is the injected flow rate, and 𝑐௙ is a free parameter. The previous algorithm 

can then be used in a similar way by providing 𝑐௙ and 𝐹௥(𝑡) or actually: ∫ 𝐹௥(𝑡)
௧

଴
. An example is shown below. 

 

Figure 3: Example of the ETAS model for induced seismicity. Red dots are simulated events, blue line 
is the intensity rate, and black line is the flow rate. Injection starts at day=5 and stops at day=60; left 
figure is the whole simulation (t=120 days), and right figure is a zoom on the period with the highest 
density of events 

Note that the simulated magnitudes are relatively low. It is also interesting to see that, while the intensity rate 
increases with injection in the first period (𝑡 < 60), the biggest spike happens in the post-injection period (𝑡 >
60). This is a good example of the inherent randomness of this model, where a “big” event might occur at any 
moment. This is a good illustration of the difficulty of predicting induced seismicity because there are multiple 
phenomena involved at the same time and some are very uncertain (in this simulation, it would be the 
redistribution of stresses following moderate earthquakes). 
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3.1.1.3 PARAMETER ESTIMATION 

The five independent ETAS model parameters (Equation (1)) are often calculated with Maximum Log-
Likelihood approach with a given catalogue (Ogata, 1988). For a Poisson process, the Log Likelihood is given 
by: 

log 𝐿(𝜃) = ෍ log 𝜆(𝑡௜; 𝜃) − න 𝜆(𝑡; 𝜃)𝑑𝑡
்

଴

ே

௜ୀଵ

 

Where 𝜆(𝑡; 𝜃) is the conditional intensity rate, and {𝑡௜} is the set of occurrence times of earthquakes in an 
observed time interval [0, 𝑇]. 

This is a nonlinear, iterative regression based on initial guesses. Thus, we need to run many calculations in 
order to assure the convergence. It is worth noting that  

 μ is simply (number of earthquakes)/(period of observation) without triggering term. 
 Κ cannot be so small comparing to μ. If the triggering effect is ignored within the regression, it is 

possible that the solution is not obtained correctly.  
 α is expected to be slightly larger than 1 such that large earthquakes play a more significant role 

triggering the following earthquakes. If a small α is obtained (α~0.1), the dependency of magnitude is 
not detected, partially because magnitude in the catalogue may be imprecise.  

 𝑐 can be small, noting 𝑐 = 0 in the original form of Omori’s aftershock law. Regarding the probabilistic 
aspect of the process, this term might not play a principal role in the Equations.  

 𝑝 is close to 1, as shown in many papers.  

3.1.2 Seismogenic index model 

3.1.2.1 DESCRIPTION 

The seismogenic index model – sometimes called the Shapiro model – was first proposed by Shapiro et al. 
(2010). The main principle behind this model is the observation that there is an approximately linear 
dependence between the number of events above a given threshold and the cumulative injected volume. 

Based on this, they define a seismogenic index Σ as a quantity independent of injection time and of any other 
injection characteristics. Once it has been measured for an injection site, it can be used with the following 
equation: 

log 𝑁 = log 𝑄௖(𝑡) − 𝑏𝑀 + Σ 

With 𝑁 the number of events with magnitude superior to 𝑀, 𝑄௖(𝑡) the cumulative injected volume and 𝑏, the b-
value in the Gutenberg-Richter (GR) distribution. 

As with all the statistical models, this equation is used in a (nonhomogeneous) Poisson process for generating 
events. A standard power distribution based on the GR law will assign the respective magnitudes. 

However this equation is only valid during injection. For the post-injection period, it is common to use a modified 
version of Omori’s law (e.g. Langenbruch & Zoback, 2016): 

𝑅(𝑡) =
𝑅଴

ቀ
𝑡
𝑡଴

ቁ
௣ , 𝑡 > 𝑡଴ 

With 𝑡଴ the time at which injection stops, 𝑅଴ is the seismicity rate at injection stop, 𝑅(𝑡) is the seismicity rate at 
time 𝑡, where 𝑝 is the p-value of Omori’s law describing the rate of decay. 

One of the main differences between this model and the previous ETAS model is that this one does not take 
account of aftershock effects: the fact that a non-negligible part of the seismicity rate is due to aftershock 
activity after a (bigger) main shock. In order to overcome this, most authors will calibrate the model on 
declustered data (i.e. aftershocks being removed from data, van Stiphout et al. 2012). This can be problematic 
in a real-time setting, depending on the importance of aftershocks in the sequence. 
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3.1.2.2 EXAMPLE 

 

Figure 4: example of forecast using the seismogenic index (from Langenbruch & Zoback 2016) 

Compared to simulations using ETAS, a forecast using the seismogenic index will appear “smoother”. We can 
see from the example above that the large rate of seismicity following the Fairview event is not replicated by 
the model. 

3.1.3 Seismic Efficiency Model 

A similar model, called the seismic efficiency model was proposed by Hallo et al. (2014). McGarr (2014) 
proposed that the cumulative seismic moment released during injection Σ𝑀଴ is determined by the total 
cumulative volume of fluid injected:  

Σ𝑀଴ = 2𝜇𝑉  

In which 𝜇 is the rock shear modulus. This corresponds to a worst-case scenario where all the strain induced 
by a volume change is released as seismic energy. Hallo et al. (2014) therefore define a seismic efficiency 
ratio 𝑆ாிி. The above equation thus becomes:  

Σ𝑀଴ = 𝑆ாிி𝜇𝑉  

From there, using the G-R relationship, the authors can link this cumulated seismic moment to the maximum 
magnitude induced. As with the previous model, it does not consider aftershocks or triggered events. 

This model is used by Verdon & Budge (2018) in comparison with the seismogenic index model on the case 
of hydraulic fracturing. In fact, one model (the seismogenic index) scales the injection volume to the number 
of events larger than a given magnitude, while the other (the seismic efficiency) scales the injection volume to 
the cumulative seismic moment release. 

3.2 PHYSICS-BASED MODELS 

In this section we will give a high-level overview of the some of the main features and components of physics-
based (and hybrid) modelling approaches, which can be applicable to modelling induced seismicity in case of 
CO2 injection or wastewater-injection related to shale gas operations.  

A (partially) physics-based approach to model induced seismicity associated to subsurface operations 
generally consists of the following (combination of) components: 

1) Assessment of the spatial and temporal evolution of pressure and temperature (and in some cases 
also chemical processes) 

2) Assessment of the spatial and temporal evolution of stress, in terms of magnitude and areal extent of 
fault Coulomb stress changes, fault Coulomb stressing rates and fault reactivation potential 
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3) Assessment of seismic or aseismic fault slip and fault rupture for a single event and/or: 
4) Assessment of seismicity rates and frequency magnitude relations for multiple seismic events  

Physics-based models can comprise models ranging from simplified 1D to full 3D full field models, capturing 
the geological complexity of the site, from analytical to numerical models and from one-way coupled to fully 
coupled thermo-hydro-mechanical-chemical models, capturing the complex interaction between flow, thermal, 
chemical and mechanical processes. 

3.2.1 Modelling pressure and temperature fields 

Pore pressure and temperature changes caused by injection of CO2 or waste water injection may lead to fault 
reactivation and induced seismicity. In order to assess the potential of fault reactivation and enable mitigation, 
it is crucial to understand the interplay between faults and pressure-, temperature- and associated stress 
changes near these faults. The evolution of pore pressure and temperature fields can be modelled analytically, 
semi-analytically or numerically. Analytical solutions can be applied for simplified geometries, such as axi-
symmetrical or horizontally layered (pancake-like) reservoir configurations. In the SECURe project, such an 
axi-symmetrical analytical model is used to model the pore pressure, temperature and stress evolution around 
a single injector (e.g. CO2 injector or waste water injection well), in order to assess the impact on fault stability 
and seal integrity (see Figure 5). A more detailed description of the model basics and results will be presented 
in the deliverables D2.5 and D2.6 of the SECURe project. In Fokker et al., 2019 another example of a semi-
analytical fully coupled fast model is presented which can be used to obtain a first order assessment of pore 
pressure, temperature and stress changes around a single injection well. 

 

Figure 5: Axi-symmetrical analytical model of pressure and temperature evolution around an injection 
well. 
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These (semi-)analytical models will typically be used when only limited information is available on the location, 
orientation, offset and (sealing) properties of the faults and the geometry and properties of the reservoir and 
burden. (Semi-) analytical models are fast and therefore well suited for uncertainty analysis and probabilistic 
assessments, but they cannot fully capture the key processes and geological complexity, often relevant for 
large scale CO2 or waste water injection. Pore pressure and temperature fields around multiple injection wells 
will deviate from radial symmetry, and heterogeneities and flow anisotropy caused by different lithologies, 
layering, fault offset and sealing faults cannot easily be incorporated in these simplified models. These effects 
can be captured in semi-analytical and numerical reservoir models. In section 3.2.5, we will shortly describe 
the coupled numerical model (Tough-FLAC3D) which is currently used in SECURe for the assessment of fault 
reactivation and induced seismicity during CO2 injection. 

3.2.2 Modelling stress and fault reactivation potential 

Fault reactivation potential can be evaluated using static geomechanical models, which analyze the stress 
evolution in the reservoir and associated effects at fault planes, based on pore pressure and temperature 
changes obtained from reservoir models (e.g., Ter Heege et al., 2018). As a first order screening tool, 1D 
analytical models for fault stability can be used to assess fault reactivation potential. These models are based 
on 1D uniaxial analytical solutions for poro- and thermoelastic stress changes (see e.g. Buijze et al., 2019a) 
caused by pressure and temperature changes. Based on fault orientation, the effective normal and shear 
stress changes on the faults are derived. Fault stability criteria such as slip tendency or Shear Capacity 
Utilization (SCU), based upon a Mohr Coulomb failure criterion, are then used to assess whether stress 
changes exceed fault strength, thereby causing fault reactivation. These 1D models require a minimum of input 
data and are very efficient in terms of computational costs, and can provide a first-order estimate of fault 
stability under changing pore pressure and temperature conditions. As the models are computationally 
efficient, they can be used for uncertainty and sensitivity analysis. They require input on initial stress conditions, 
elastic reservoir properties, fault orientation and fault strength to calculate fault stability and reactivation 
potential. Walsch and Zoback (2016) have used such a 1D fault stability model to perform a probabilistic 
analysis of potential fault slip related to waste water injection in Oklahoma. They incorporate uncertainties in 
the stress tensor, pore pressure, fault friction coefficient and fault orientation to obtain a cumulative distribution 
function of the pore pressure changes required to cause fault slip on each fault mapped in the area. This way, 
they can assess the probability of fault reactivation for each known fault in the area affected by the pressure 
changes induced by waste water injection. 

As 1D analytical fault stability models are based on the assumption that stress changes occur under uniaxial 
deformation, they cannot account for the effects of spatially varying pressures and temperature fields, reservoir 
heterogeneity, and the effects of ‘stress arching’ caused by fault offset, reservoirs of limited extent and sealing 
faults. In contrast to 1D fault stability models, 2D and 3D semi-analytical and numerical fault stability models 
can be used to simulate the effect of spatial gradients in pore pressure and temperature (Ter Heege et al., 
2018), and geometrical complexity on stress arching (albeit in case of 2D models the analysis is limited to 
‘‘plane strain’ conditions). In Candela et al. (2019a), 3D numerical flow calculations have been combined with 
the 3D semi-analytical code of MACRIS (Mechanical Analysis of Complex Reservoir Induced Seismicity) to 
assess fault stability and associated seismicity during depletion of the Groningen gas field. In SECURe, the 
same MACRIS model has been used to model fault Coulomb stress changes and associated seismicity on 
basement faults related to waste water injection in Oklahoma (for more details see section 3.2.6). 

3.2.3 Modelling fault rupture and seismicity 

Fault stability models focus on the fault stress changes and their effect on fault reactivation potential. 
Accordingly, these models can provide valuable information on the timing and location of fault reactivation. 
The criteria for fault stability (such as slip tendency and SCU) in the above models are based upon a Mohr 
Coulomb failure criterion, which defines the ‘static’ strength of a fault. The Mohr-Coulomb criterion represents 
an ideal plastic failure criterion which cannot be used for realistic simulation of the post-failure behavior of 
faults. As such it cannot be used to determine the magnitude of fault slip and areal extent of fault reactivation, 
nor to address the question whether we can expect seismic or aseismic slip to occur. Furthermore, the above 
quasi-static numerical models cannot account for the effects of inertia forces, related to the (de)acceleration 
of the rock mass during fault rupture. 
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Dynamic rupture models do include the effects of inertia on fault slip and are used to investigate the time-
dependent evolution of the seismic fault rupture process (Buijze et al., 2015 Wassing et al., 2016, Jin and 
Zoback, 2018, Buijze et al., 2019b). They are commonly based on advanced constitutive laws for fault frictional 
behavior, like a slip-weakening or rate and state friction law (Dieterich, 1994). These material laws are better 
suited for modelling the post-failure behavior of faults after the onset of fault slip. Dynamic rupture models are 
thus tailored to give insight into the dynamic rupture behavior of the fault. Dynamic rupture models can be used 
to analyze what factors control (seismic or aseismic) rupture velocities and rupture arrest, the size of the 
rupture area, the total slip displacements and typical stress drops of seismic events. This way they can be 
used to analyze if fault rupture can potentially extend outside the area of pressure and temperature disturbance 
and whether there is a potential for large-magnitude seismic events. Dynamic rupture models are 
computationally expensive and in practice mainly run in 2D to simulate the characteristics of a single seismic 
event. As such, they cannot provide frequency-magnitude relations of seismic events, nor can they be used to 
create synthetic catalogues of seismic events. An additional limitation of the models is that the input 
parameters for the advanced fault friction laws are usually poorly constrained. However, based on scenario 
and sensitivity analysis, taking into account uncertainties in input parameters, they can provide valuable insight 
into the main factors controlling the physics of nucleation, propagation and arrest of seismic events. It is noted 
here that dynamic rupture models have not been used in SECURe to model seismicity related to CO2 or waste 
water injection. 

3.2.4 Modelling seismicity rates and frequency magnitude relations (multiple events) 

In contrast to numerical fully dynamic rupture models, hybrid approaches have been used to model frequencies 
and magnitudes of multiple seismic events, combining key physical processes in a simplified manner with 
statistics. A common approach is to use ‘fast’ geomechanical models to compute Coulomb stress changes on 
faults, combined with statistical and stochastic sampling approaches from predefined frequency-magnitude 
distributions to derive synthetic seismic catalogues. As an example, Gischig and Wiemer (2013) describe a 
hybrid model for induced seismicity around an injection well, based on a simplified 2D axisymmetrical pore 
pressure diffusion model, combined with a stochastic geomechanical seed model. In this seed model potential 
earthquake locations are represented as ‘seed-faults’ which are uniformly and randomly distributed over the 
entire model. Local in-situ stress conditions and fault orientations are drawn from a probabilistic distribution. 
The combination of local in-situ stress, fracture orientation and fault strength (defined by a Mohr Coulomb 
failure criterion) determine the fault criticality at each seed fault. Depending on the pressure-induced stress-
change a fault at a certain seed-fault can reactivate and trigger a seismic event. Once an event is triggered, a 
magnitude is randomly drawn from a set of magnitudes forming a frequency magnitude distribution. This 
geomechanical seed model enables fast computation of catalogues of seismic events. Other approaches have 
been used to model frequency-magnitude distributions, synthetic catalogues of seismic events and/or total 
seismic moment released during subsurface operations. Van Wees et al. (2019) used the semi-analytical 
MACRIS model to assess the total seismic moment of induced seismicity caused by pore pressure changes 
during geothermal operations (see also section 3.2.6 for the application of MACRIS in SECURe). From on-
fault positive Coulomb stress changes, they derive average excess Coulomb stress relative to a Mohr Coulomb 
failure law over a certain slip length. Crack theory by Madiaraga (1979) is then applied to relate seismic 
moment to crack size and stress drop and to compute the total seismic moment released on the fault. Several 
other approaches for modelling multiple seismic events have been described e.g. by Baisch et al., 2010 and 
Candela et al., 2019b. 

In the approaches above, elastic Coulomb Stress Changes are used to derive seismicity and seismic moment 
release. Alternatively, a relation between Coulomb Stressing Rates and seismicity rates (rate-and-state 
seismicity Dieterich (1994)) can be used for modelling seismicity. Segall and Lu. (2015) and Heimison and 
Segall (2018) use a simplified version of rate-and-state seismicity, to relate the relative seismicity rate (defined 
as the ratio of the rate of seismicity to the tectonic background seismicity rate) to the Coulomb Stressing Rate. 
In a similar way, this relation between Coulomb Stressing Rates and seismicity rates was used by Zhai et 
al.(2019) and Candela et al. (2019) to model induced seismicity by waste water injection in Oklahoma, 
respectively seismicity induced by gas depletion in the Groningen Field. In the present SECURe project, we 
use a coupled numerical code in FLAC3D-Tough3 in combination with the rate-and-state seismicity theory to 
assess the effect of CO2 injection in a depleted gas reservoir on induced seismicity (see next section). A more 
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detailed description of the model basics and results will be presented in the deliverables D2.5 and D2.6 of the 
SECURe project. 

3.2.5 Modelling induced seismicity with a coupled Thermo-Hydro-Mechanical model in FLAC3D-
Tough(React) 

In SECURe, we use a coupled thermo-hydro-mechanical numerical model to analyze the effect of fluid (e.g. 
CO2 or water) injected into a depleted reservoir. Using the FLAC3D-Tough(React) simulator (Taron et al., 2009), 
we take into account the coupling between the thermal, hydraulic and mechanical processes which affect 
pressure and temperature evolution around a single injection well and the mechanical response of nearby fault 
systems (see Figure 6). The FLAC3D-Tough(React) simulator is used to analyse the spatial and temporal 
evolution of pore pressures, temperatures and stresses in reservoir and over- and underburden around the 
injection well. Fault planes are not explicitly modelled, but we assume faults can be potentially present at any 
location in the model. Assuming a specific fault orientation and strength, the spatio-temporal evolution of pore 
pressures and stress changes at all locations in the model can be monitored and used to compute normal- 
and shear stresses on potential faults. From changes in fault normal and shear stress, Coulomb stress 
changes on the faults can be derived: 

Δτcs = Δ(τs - µσ’n)                      [1] 

 

Where the symbol Δ denotes a change, τs is shear stress, σ’n is normal effective stress on the fault, σn is 
total normal stress on the fault and µ is friction coefficient of the fault. A positive Coulomb stress change 
indicates a destabilizing stress path of the fault, whereas a fault segment with a negative Coulomb stress 
change is stabilizing. 

 

Figure 6: Schematic presentation of the interaction and coupling between processes that can play a 
role during fluid (e.g. CO2, water) injection. All processes can be captured in the FLAC3D-Tough(React) 
model. M: mechanics, T: thermal, H: hydraulic, C: chemical processes. Processes that are expected to 
be dominant for injection into a depleted sandstone reservoirs have been marked with an asterix. 
Though chemical processes can be part of the analysis, in the present SECURe project the interaction 
of chemical processes with flow and mechanics has not been taken into account, which means the 
ToughReact part of the model has not been used. 
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Figure 7: Example of FLAC3D-Tough(React) modelling results (half-symmetry) of fluid injection. Top: 
Model geometry and lithologies and position of injection well. Below, pore pressure field, total 
horizontal stress and total vertical stress due to pore pressure and temperature changes (not shown) 
after 30 years of injection. White symbols indicate potential location of faults. 

The evolution of Coulomb stress changes over time can be used to derive Coulomb stressing rates. These 
stressing rates are then used to obtain relative seismicity rates, based on the theory of rate-and-state seismicity 
(Dieterich 1994, Segall et al., 2015, Heimison et al., 2018): 

 

ௗோ

ௗ௧
=

ோ

௧ೌ
(

ఛ೎ೞ̇

ఛబ̇
− 𝑅)                         [2] 

 

Where R is relative seismicity rate (i.e. the seismicity rate divided by background seismicity rate) and τ0 is the 
background tectonic stressing rate. The ta in the above equation is a decay parameter, which defines how long 
it takes for seismicity to decay to its background value, following a large stress perturbation and depends on 
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background stressing rate, fault parameter A which quantifies the direct effect of rate and state friction 
behaviour of the fault and normal effective stress: 

𝑡௔ =
஺ఛబ̇

ఙ೙
ᇲ                          [3] 

The FLAC3D-Tough(React) model in SECURe is currently applied for analysis of the effect of fluid injection into 
a depleted reservoir. By using this model, we analyze the impact of current and past operational parameters 
(such as current injection rates, volumes injected and injection temperature, past reservoir depletion pressure 
and its effect on stress paths during repressurization of the reservoir) and geological factors (such as reservoir 
and fault geometry, reservoir and seal geological, thermal, flow and mechanical properties) on fault reactivation 
potential and associated seismicity. Results of the FLAC3D-Tough(React) model will be described in SECURe 
deliverables D2.5 and D2.6.. 

3.2.6 Workflow for managing seismicity risks developed by TNO 

TNO’s objective for related work in SECURe WP5 on mitigation methods is to build a dual-objective 
optimization workflow (see Figure 8) for maximizing the reservoir performance while minimizing seismic activity 
(see initial study, described in Ter Heege et al., 2018). TNO decided to focus on the Oklahoma waste water 
injection case because it gathers all the required ingredients to test our workflow over a real case: 

(i) a sufficient number of induced seismic events to calibrate our forward models, 
(ii) a mitigation procedure imposed by the regulator, 
(iii) a time period post- mitigation procedure long enough to show a statically significant seismicity 
response and to test the predictions of our optimization workflow. 

This combination is unique, and the idea is to test the method in a pseudo-prospective way on this dataset so 
we can gain confidence for using it on prospective sites in Europe. 

 

Figure 8: flowchart of the dual-optimizer 

The ultimate goal is to focus on the post-mitigation procedure period and to provide relevant information to 
those involved with understanding risks associated with maximizing total injected volume while minimizing 
seismicity (over a fixed period of time). One foresees that this optimal strategy would have permitted a higher 
total injected volume (over a fixed period of time) with a lower seismicity risk relatively to the actual scenario 
(following the mitigation procedure imposed by the regulator). Detailed results of the dual-objective 
optimization workflow to waste water injection in Oklahoma will be reported in D5.6. 
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4 Case studies 
In this chapter we focus on the ETAS model (section 3.1.1) and we test its application to 2 case studies: the 
first is from a CO2 storage pilot site is France. The injection was in one (closed) reservoir through one well and 
is thus a good example of local induced seismicity. The second case study is wastewater injection in Oklahoma 
(USA) in relation with shale gas exploitation. Injection is in a large reservoir through hundreds of wells is thus 
a good example of regional induced seismicity. From the review of Chapter 2, it seems that statistical models 
were never applied to CO2 storage, and there are very few application of the ETAS model to the context of 
unconventional gas exploitation. 

4.1 CASE STUDY 1 – ROUSSE, FRANCE 

4.1.1 The data 

The Rousse CO2 injection experiment was carried out in a depleted gas reservoir in the Pyrenean-Lacq area 
during 2010 – 2013. The reservoir context and injection process are summarized by Thibeau et al. (2013). The 
microseismicity observation was made around the well and well documented in Payre et al. (2014). The 
seismicity data is derived from Payre et al. (2014). The observed microseismicity is grouped in two categories: 
around the well (reservoir) and neighbouring natural earthquakes in a known fault zone. We focus only on the 
first induced events. As the seismicity remains relatively small and concentrated around the well, we do not 
use the spatial information of the seismicity; we are interested only in the magnitude-time diagram (Figure 9).  

The injected volume is moderate (50 kt of CO2 in total) and the induced seismicity is relatively low (only two 
events above magnitude 0, and an average rate of 0.27 observed events per day). Microseismicity of small 
magnitude is detected thanks to the dense, borehole network (Payre et al., 2014). During about 3 years, more 
than 600 micro earthquakes were detected. According to the magnitude-frequency diagram (Figure 9), we 
know that the completeness is down to magnitude -1.5 and 336 events (magnitude ≥ -1.5) are available for 
our analyses. Payre et al. (2014) propose that there are two phases of injection process. (1) main injection 
period: March 2011- February 2013) and (2) post-injection period (later than March 2013). The earthquakes 
number corresponds to 241 and 70, respectively. We then distinguish these two phases differently in the 
following statistical analysis.  

  

Figure 9: (left) The seismicity catalogue from Payre et al. (2014) for the Rousse CO2 injection 
experiment. The injection volume is also shown for reference (total 51 kt). (right) The magnitude-
frequency relation in cumulative number (black solid line) and in the number of each 0.1 magnitude 
(dotted line). The linear regression (red line) informs the completeness of the catalogue down to 
magnitude -1.5 and a b-value (slope) of about 1.3. 

 

4.1.2 Estimation of parameters 

The post-injection phase has no instantaneous influence of injection but is related only to the past process and 
seismicity. We apply the non-stationary seven-parameter model (chapter 3.1.1). Regardless of the small 
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number of earthquakes (70 events only), the regression provides a converged solution set (Figure 10). The 
obtained parameters are in the below table below with Mc = -1.5. 

Table 1: Estimated parameters of the ETAS model 

Parameter Obtained value 

𝜇଴ 0.004 (event/day) 

Β 0.26 (event/day) 

𝛾 0.048 (day-1) 

Κ 0.027 (event/day) 

𝛼 1.29 

𝑐 2e-11 (day) 

𝑝 0.9 

 

The basic parameters of the ETAS model (Κ, 𝛼, 𝑐, 𝑝) are quite reasonable. This table shows that the seismicity 
rate is Β = 0.25 (event/day) at the moment of injection end (the beginning of post-injection period), and reduces 
after that to 0.004 (event/day). The decay parameter Β indicates that the seismicity rate is reduced by a factor 
3 20 days later and divided by 20 60 days later. It is very important that the ETAS regression reveals the 
seismic rate change, in particular, the return to the normal seismicity rate μ଴.  

  

Figure 10: Regression result for the post injection period. (Top) The comparison of cumulative 
earthquake number (observation in black, ETAS model in red). (bottom) The comparison of daily 
earthquake numbers (blue points), averaged earthquake rate (light blue line) and earthquake rate 

estimated by the ETAS model (red line). 

 

On the other hand, it is difficult to provide a stable regression for the injection period, mainly because the 
seismicity rate varies with time according to the injection process and its relation is unknown. However, 
supposing that the basic ETAS parameters (Κ, 𝛼, 𝑐, 𝑝) are unchanged during the whole period of the 
observation, we can estimate the parameter 𝜇 as variable, namely,  

𝜇(𝑡) = 𝜆(𝑡) − ෍ Κ𝑒ఈ(ெ೔ିெ೎)
1

(𝑡 + 𝑐 − 𝑡௜)
௣

௜

 

where M = ∫ 𝜆(𝑡)𝑑𝑡 provides the observed cumulative earthquake number and the second term on the right-
hand side corresponds to the contribution of triggering (aftershock) effect of past earthquakes. Figure 11 shows 
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the extracted evolution of 𝜇(𝑡). This is a straight-forward calculation fixing the parameters (Κ, 𝛼, 𝑐, 𝑝) in the 
standard five-parameter ETAS model. 

  

Figure 11: (top) Seismicity (black line) with the injected volume (pink) and reported pressure (green). 
The injected period (red broken area) is analysed. (middle) The observed cumulative earthquake 

numbers (black line), the calculated triggering contribution (orange) and the cumulated base rate (M 
as defined above). (bottom) Seismicity (blue dots), averaged seismicity rate (light blue line) and the 

extracted base rate (red line). The injected volume and pressure are plotted again for reference. 

 

Finally, Figure 12 shows some attempts to correlate the detected variation of 𝜇(𝑡) or its integral Μ(𝑡). It is 
confirmed that even during the steady injection (constant injection rate) 𝜇(𝑡) changes. The behaviour is similar 
for total injection and pressure in the current example. Both indices are visibly correlated in Figure 11, so that 
we should be careful when generalising. Nevertheless, it seems common that some actions activate 𝜇(𝑡) 
rapidly and then this decreases with time gradually. More analyses will be planned in the coming months.  

  

Figure 12: From top left to right bottom, variation of 𝝁(𝒕) with injection rate, total injection and 
pressure and 𝚳(𝒕) with total injection. The colour represents the days shown in Figure 11. 
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4.1.3 Perspective 

The case of Rousse is a real-world example of localised micro-seismicity due to fluid injection by a single well 
into a reservoir. It is still difficult to derive any explicit relation between the injection operation (injected volume 
and well pressure) and “ETAS de-clustered” seismicity rate during the injection. However, our attempt 
quantitatively indicates that the seismicity rate is decreasing by a factor of 20 after 60 days for the post-injection 
phase. Therefore the level of natural seismicity existing before injection is reached rapidly after the arrest of 
the injection. 

On the other hand, the analysis also shows qualitatively that the seismicity rate is depending on the on-going 
operational parameters (injected volume and well pressure) during a continuous operation. However a change 
of operation (halt of injection, change of injection flow) may induce a different state of seismicity rate than the 
previous one. 

These information are useful (not unique yet) for providing possible scenarios of the model parameters in 
forward modelling presented in section 3.1. 

4.2 CASE STUDY 2 – OKLAHOMA, USA 

4.2.1 The data 

The activation of seismicity in Oklahoma and in the south of Kansas is a state scale phenomenon (Ellsworth, 
2013). The multiple, massive injection of waste water in a deep aquifer (Arbuckle group) may have triggered 
basement faults at depth (e.g. Schoenball and Ellsworth, 2017). The seismicity catalogue is obtained and 
available through the  Oklahoma Geological Survey3. We confirm that the completeness4 is down to magnitude 
2.3, which is a greater degree of resolution than the national catalogue of USGS. The relocation catalogue is 
provided by Schoenball and Ellsworth (2017), for example, but the event triggering is based on the Oklahoma 
Geological Survey (OGS) catalogue. We do not need the precise spatial locations, so we use the OGS 
catalogue from 2000/01 to 2018/11 (30386 earthquakes in total). The OGS also provides a fault database. The 
injection/extraction is reported monthly for each well via Oklahoma Corporation Commission, Oil and Gas 
Division5. All the publicly available data are compiled in Figure 13.  

                                                      

3 http://www.ou.edu/ogs/research/earthquakes/seismicstations 
4 Completeness: the minimum magnitude above which it is thought that all earthquakes are reliably recorded. 
From: http://www.corssa.org/glossary (Accessed on 28/05/2020) 
5 https://www.occeweb.com/og/oghome.htm 
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Figure 13: The compiled earthquakes, well positions and faults in Oklahoma state. Earthquakes are 
coloured by time. The injection points as of 2018 are shown by black crosses. The faults are illustrated 
by red lines. 

4.2.2 Estimation of parameters 

First of all, we study four major earthquakes in Oklahoma:  

 2011/11/06 M5.8 Prague 
 2016/02/13 M5.1 Fairview 
 2016/09/03 M5.8 Pawnee 
 2016/11/07 M5.0 Cushing 

Each of the earthquakes is accompanied by aftershocks. The area and the number of earthquakes are quite 
different from each other, but the regression for the five-parameter ETAS model provides a stable convergence 
on the parameters (𝛼, 𝑐, 𝑝) and indicates possible variation of the parameter 𝜇. Figure 14 shows an example 
for the 2011 Prague earthquake. We then fix the three parameters (𝛼 = 1.78, 𝑐 = 0.011, 𝑝 = 1) and let (Κ, 𝜇) 
variable.  
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Figure 14: (left) 2011 Prague earthquake and regional seismicity. Red frame indicates the selected 
area for the analysis. Only the period after the mainshock is analysed. (right) Comparison of 

earthquake number between the observation and the estimation from ETAS model (𝜶 = 𝟏. 𝟖𝟖, 𝒄 =
𝟎. 𝟎𝟐𝟔, 𝒑 = 𝟏, 𝜥 = 𝟎. 𝟎𝟏𝟒, 𝝁 = 𝟎. 𝟎𝟎𝟕𝟎). 

Instead of focusing on the particular area of the major earthquake, we aim to carry out systematic parameter 
studies. As we need a sufficient number of earthquakes for the statistics, we choose a radius of 20 km such 
that we have 53 areas containing at least 250 earthquakes of magnitude Mc ≥2.3 (Figure 15). For all the areas, 
we apply the regression from the ETAS model by fixing the three parameters (𝛼, 𝑐, 𝑝). Figure 16 shows all the 
results. The analyses are held for 200 events by shifting 50 events each time. Globally we find that the 
parameter Κ is unchanged in space and time. On the other hand, the parameter 𝜇 changes with time, not 
always proportional to the observed seismicity rate 𝜆. In general, the seismicity shows an increase in recorded 
events around the year 2015, thus both 𝜆 and 𝜇 have a peak there and decrease toward 2018.  

 

Figure 15: Evaluation of earthquake numbers every 0.2° within a radius of R0 = 20 km. The red circles 
show areas which include equal to or more than 250 earthquakes of magnitude Mc ≥2.3. Three 
marked places show the three areas with the highest seismicity. 

observation 

calculation 

① 

② 
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Figure 16: ETAS model fitting for 53 areas. 200 events are used every time by shifting 50 events. The 
seismicity is in black (magnitude and time). The observed seismicity rate 𝝀(𝒕) is in blue. The obtained 
two parameters (𝚱(𝐭), 𝝁(𝒕)) are in black and red, respectively. The horizontal bars correspond to the 
period of 200 events used for each analysis and the points represent the middle of this period. 

Finally, we also extract similarly the injection information in the same area and compare with the ETAS 
parameters. Figure 17 represents an area, for example. As already pointed out for Figure 16, the parameter Κ 
is stable over the whole period, but the parameter 𝜇 changes with time. Especially 𝜇 becomes high at the 
beginning of the onset of the seismicity and decreases with time. This trend is not the same as the observed 
seismicity rate 𝜆. The visible peak of 𝜆 at the end of 2015 is delayed comparing to the peak of 𝜇. For the 
purpose of relating the injection parameter and the seismicity, Figure 18 plots the peak values from each area, 
(𝜆, 𝜇) and maximum monthly injection, maximum well pressure and total injection at the moment of the peak 
of 𝜇. The correlation with the maximum observed seismicity rate  𝜆 and injection is not clear (black line), while 
the parameter 𝜇 has a clearer, positive correlation with the injection (maximum monthly injection and total 
volume). The relation with the maximum well pressure in the area has positive correlation. Note that there are 
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still three areas where there are no wells but seismicity is triggered. This infers that the seismicity is triggered 
not only from the locally injected fluid but remotely due to the fluid and/or seismicity migration from the 
neighbours. The regression of the parameters should be related both the local operation (injected volume) and 
the surrounding seismicity (Aochi et al., in preparation, 2020). 

 

Figure 17: (top) Seismicity (blue) and well position (red). Selected area indicated by yellow mark. 
(middle) Injection information. Black line shows the monthly injected volume over the whole 
Oklahoma state. Blue line indicates the quantity in the selected area. Well pressures are marked by 
red for all the wells included in the selected area. (bottom) The whole seismicity in Oklahoma in black 
vertical bars. White bars correspond the one in the selected area used for the ETAS parameter 
estimation. The black, red, and blue marks with horizontal bars represent the estimation of the 
parameters in this selected area (same as Figure 16). 
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Figure 18: Maximum values of (𝛌, 𝛍) from 53 areas as a function of maximum monthly injection, 
maximum well pressure and total injection before the peak of 𝛍. The linear regressions are 
superposed. 

4.2.3 Perspectives 

The induced seismicity in Oklahoma is another extreme end case where many faults are activated regionally 
due to massive fluid injection from many wells (Ellsworth, 2015). The ETAS declustering analysis clearly 
shows drastic increase of seismicity rate from 2013 to 2015. Our analysis confirms a decrease of seismicity 
after the peak (2015-2016) toward the end of 2018. Although further quantitative analysis is a continuous 
task, we have learnt: 

 The seismicity change is due not only to the local injections but also the migration of fluid or/and 
seismicity from the surrounding, since there are very few injections in some areas regardless of the 
activation of seismicity.  

 Triggering rate (Κ) is quasi-steady during the whole period and over the whole area. A slight gradual 
decrease by a factor of 2 at average is important for anticipating the long-term seismicity evolution 
once activated.  

We also note  
 ETAS declustered seismicity rate is not always proportional to the observed seismicity rate (𝜇 𝜆⁄ ≠

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡). Therefore it is important to detect the change of 𝜇 to forecast the seismicity.  
A systematic study between the injection parameters and the seismicity in different contexts remains a future 
work. The two demonstrative examples in this chapter will give basis to accumulate the experience and 
estimate the model parameters for assessing the seismicity evolution. 

4.3 DATA AND RESOURCES 

In this project, we have used publicly accessible data sets from different published examples. The Rousse 
data can be obtained in the paper of Payre et al. (2014). The Oklahoma data are available from Oklahoma 
Geological Survey for the seismicity catalogue ( http://www.ou.edu/ogs/research/earthquakes/seismicstations) 
and from Oklahoma Corporation Commission, Oil and Gas Division for the injections 
(https://www.occeweb.com/og/oghome.htm). The codes of ETAS analysis are available from Institute of 
Statistical Mathematics, Japan (https://www.ism.ac.jp/index.html).  
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5 Discussion and perspectives 
Firstly, what is evident from the previous chapters is that the interaction of mechanisms leading to induced 
seismicity is complex and thus to accurately model the interacting processes is very challenging. Based on the 
literature review it is clear that models respond to several objectives and that it is challenging, if not impossible, 
to find a “one size fits all” tool, which explains the great variety of approaches. Broadly, here is a list of 
objectives for modelling activities: 

 Provide prediction capacities in order to guide decision making and/or risk management. This can be 
further divided into: 

o Short-term forecasting, with a scale in the order of an hour. This requires very fast models that 
are constantly recalibrated using real-time data.  

o Long-term forecasting, with a scale on the order of months. This requires more robust models 
which can reproduce a larger variety of scenarios. They however do not need to be as fast as 
for short-term forecasting 

 Provide insights into the underlying mechanisms of induced seismicity: these models are necessarily 
physics-based and may be large and complex. 

Following the subdivision of models introduced in chapter 2, it is evident that statistical models are primarily 
useful for short-term forecasting, and that complex physics-based models are primarily more suited for 
providing insights. It is less clear which type of models is most useful for long-term forecasts and this is where 
hybrid models have emerged and seem to be a promising option. 

Consequently, we can only assess which model is the “best” for a given application, and assessment of the 
optimum model depends on the objectives of the modelling approach. 

Regarding forecasting applications, methods have been developed for rigorously benchmarking models. Such 
methods have been proposed for instance by Király‐Proag et al. (2016). In this paper they compute a log-
likelihood of obtaining the data based on the models. There are other indicators which can be more suited to 
a probabilistic approach such as the Brier score used for instance in weather forecasting (Brier, 1950). 
However, the precision in prediction should be balanced with the complexity of the model to maintain realistic 
computation times and to reduce the risk of overfitting6. This is typically achieved by using widely used criteria 
for model selection such as the Akaike information criterion or the Bayes factor (Claeskens, 2016). The 
approach of rigorous model selection should not be restricted to statistical models but also to physics-based 
models (at least when used for forecasting).  

The literature review revealed that very few papers formally compare the performance of different models. 
Even when several models are tested, the authors do not generally conclude on a best model. In this regard, 
the approach followed by Mena et al. (2013) is interesting because instead of choosing a “best” model, they 
build an ensemble model by combining several models using weights computed with one of the 
aforementioned model selection criteria.  

From the review, it is also clear that currently no model is able to predict future seismicity without a calibration 
phase first, in order to determine uncertain parameters. This means that the quality and the availability of the 
data collected is very important in order to ensure the best quality from the models.  

In this respect, the most challenging aspect is for short-term forecasting where data is needed to be collected 
and interpreted in real-time. Another important aspect is that parameter inference relies primarily on 
maximizing the log likelihood, which is a method that works best with a lot of data. This is a problem particularly 
in the context of CO2 storage where levels of induced seismicity are expected to be relatively low. A solution 
is to use a Bayesian framework for parameters inference (e.g. Broccardo et al. 2017; Wang et al. 2016). In this 
framework, the modeller needs to explicitly model the prior information, which is then updated using Bayes 
formula with each data point. This provides better results in small data situations (as opposed to big data) and 
provides results as distributions, which allows more flexibility for decision making. The main drawback is the 
added complexity during inference as it relies on sampling methods such as the Monte Carlo Markov Chain 
method. 

                                                      

6 In statistics, overfitting is “the production of an analysis that corresponds too closely or exactly to a particular 
set of data, and may therefore fail to fit additional data or predict future observations reliably” - 
https://en.wikipedia.org/wiki/Overfitting  
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Regarding possible future work, there are plenty of possible directions. In the scope of SECURe, the work on 
physics-based modelling will be extended in deliverables D2.5 and D2.6, and the decision workflow will be 
further developed in WP5. 

The application of the ETAS model to the Rousse dataset could be further improved by testing a Bayesian 
inference (as there are relatively few events) of the parameters and potentially comparing different models 
(e.g. ETAS vs seismogenic index) using model selection criteria as mentioned above.  

The Oklahoma case is quite complex and challenging, and there are many possibilities that we can explore: 
using a spatio-temporal version of the ETAS model, using a hybrid version of the ETAS model, using a 
calibrated ETAS model to test predictions for future injection scenarios. This last idea can be quite challenging 
because the ETAS model can be quite unstable, meaning that if it predicts a large event, its aftershock 
sequence will dominate the seismicity rate. This means that in a Monte Carlo simulation, the results can be 
very different from one simulation to the next so predictions come with a lot more uncertainty than with other 
types of models. 

Finally, an additional deliverable for this project would be to improve our current toolbox by incorporating 
different models, giving the possibility to infer parameters from data, and to run forward models for forecasts. 

These ideas were not initially planned within the SECURe project and are propositions for future work. 
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6 Conclusions 

 The science of induced seismicity is very complex and relies on many interacting processes 
 Modelling approaches have been grouped in three categories: 

o Statistical approaches seek to fit a mathematical model to a set of data and will be more used 
in short-term forecasting 

o Physics-based approached seek to reproduce the underlying interacting phenomena and 
mainly are used for increasing understanding 

o Hybrid-approaches use a combination of the previous approaches and are promising for 
longer-term forecasts 

 The ETAS model (for Epidemic Type Aftershock Sequence) is a widely used statistical model for fitting 
and declustering natural catalogues, and was adapted to induced seismicity in the context of deep 
geothermal energy 

 We apply this model to two case studies, a small-scale pilot of CO2 injection and a large-scale regional 
wastewater injection case. 

 Both case studies show a clear relationship between operations and observed seismicity 
 However the relationships show non-linear effect and it remains a challenge to find an adequate 

mathematical representation of this relationship 
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